1vqm: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(13 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:1vqm.gif|left|200px]]
<!--
The line below this paragraph, containing "STRUCTURE_1vqm", creates the "Structure Box" on the page.
You may change the PDB parameter (which sets the PDB file loaded into the applet)
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
or leave the SCENE parameter empty for the default display.
-->
{{STRUCTURE_1vqm|  PDB=1vqm  |  SCENE=  }}
'''The structure of the transition state analogue "DAN" bound to the large ribosomal subunit of haloarcula marismortui'''


==The structure of the transition state analogue "DAN" bound to the large ribosomal subunit of haloarcula marismortui==
<StructureSection load='1vqm' size='340' side='right'caption='[[1vqm]], [[Resolution|resolution]] 2.30&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[1vqm]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Haloarcula_marismortui Haloarcula marismortui]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1VQM OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1VQM FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.3&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=1MA:6-HYDRO-1-METHYLADENOSINE-5-MONOPHOSPHATE'>1MA</scene>, <scene name='pdbligand=CD:CADMIUM+ION'>CD</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=OMG:O2-METHYLGUANOSINE-5-MONOPHOSPHATE'>OMG</scene>, <scene name='pdbligand=OMU:O2-METHYLURIDINE+5-MONOPHOSPHATE'>OMU</scene>, <scene name='pdbligand=PO2:HYPOPHOSPHITE'>PO2</scene>, <scene name='pdbligand=PPU:PUROMYCIN-5-MONOPHOSPHATE'>PPU</scene>, <scene name='pdbligand=PSU:PSEUDOURIDINE-5-MONOPHOSPHATE'>PSU</scene>, <scene name='pdbligand=SR:STRONTIUM+ION'>SR</scene>, <scene name='pdbligand=UR3:3-METHYLURIDINE-5-MONOPHOSHATE'>UR3</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1vqm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1vqm OCA], [https://pdbe.org/1vqm PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1vqm RCSB], [https://www.ebi.ac.uk/pdbsum/1vqm PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1vqm ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/RL2_HALMA RL2_HALMA] One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome (By similarity).[HAMAP-Rule:MF_01320_A]
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/vq/1vqm_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1vqm ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Peptide bond formation is catalyzed at the peptidyl transferase center (PTC) of the large ribosomal subunit. Crystal structures of the large ribosomal subunit of Haloarcula marismortui (Hma) complexed with several analogs that represent either the substrates or the transition state intermediate of the peptidyl transferase reaction show that this reaction proceeds through a tetrahedral intermediate with S chirality. The oxyanion of the tetrahedral intermediate interacts with a water molecule that is positioned by nucleotides A2637 (E. coli numbering, 2602) and (methyl)U2619(2584). There are no Mg2+ ions or monovalent metal ions observed in the PTC that could directly promote catalysis. The A76 2' hydroxyl of the peptidyl-tRNA is hydrogen bonded to the alpha-amino group and could facilitate peptide bond formation by substrate positioning and by acting as a proton shuttle between the alpha-amino group and the A76 3' hydroxyl of the peptidyl-tRNA.


==Overview==
Structural insights into the roles of water and the 2' hydroxyl of the P site tRNA in the peptidyl transferase reaction.,Schmeing TM, Huang KS, Kitchen DE, Strobel SA, Steitz TA Mol Cell. 2005 Nov 11;20(3):437-48. PMID:16285925<ref>PMID:16285925</ref>
Peptide bond formation is catalyzed at the peptidyl transferase center (PTC) of the large ribosomal subunit. Crystal structures of the large ribosomal subunit of Haloarcula marismortui (Hma) complexed with several analogs that represent either the substrates or the transition state intermediate of the peptidyl transferase reaction show that this reaction proceeds through a tetrahedral intermediate with S chirality. The oxyanion of the tetrahedral intermediate interacts with a water molecule that is positioned by nucleotides A2637 (E. coli numbering, 2602) and (methyl)U2619(2584). There are no Mg2+ ions or monovalent metal ions observed in the PTC that could directly promote catalysis. The A76 2' hydroxyl of the peptidyl-tRNA is hydrogen bonded to the alpha-amino group and could facilitate peptide bond formation by substrate positioning and by acting as a proton shuttle between the alpha-amino group and the A76 3' hydroxyl of the peptidyl-tRNA.


==About this Structure==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
1VQM is a [[Protein complex]] structure of sequences from [http://en.wikipedia.org/wiki/Haloarcula_marismortui Haloarcula marismortui]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1VQM OCA].
</div>
<div class="pdbe-citations 1vqm" style="background-color:#fffaf0;"></div>


==Reference==
==See Also==
Structural insights into the roles of water and the 2' hydroxyl of the P site tRNA in the peptidyl transferase reaction., Schmeing TM, Huang KS, Kitchen DE, Strobel SA, Steitz TA, Mol Cell. 2005 Nov 11;20(3):437-48. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/16285925 16285925]
*[[Ribosome 3D structures|Ribosome 3D structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Haloarcula marismortui]]
[[Category: Haloarcula marismortui]]
[[Category: Protein complex]]
[[Category: Large Structures]]
[[Category: Schmeing, T M.]]
[[Category: Schmeing TM]]
[[Category: Steitz, T A.]]
[[Category: Steitz TA]]
[[Category: Peptidyl transferase reaction]]
[[Category: Protein-protein complex]]
[[Category: Protein-rna complex]]
[[Category: Ribosome 50]]
[[Category: Rna-rna complex]]
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sat May  3 12:48:09 2008''

Latest revision as of 09:41, 23 August 2023

The structure of the transition state analogue "DAN" bound to the large ribosomal subunit of haloarcula marismortuiThe structure of the transition state analogue "DAN" bound to the large ribosomal subunit of haloarcula marismortui

Structural highlights

1vqm is a 10 chain structure with sequence from Haloarcula marismortui. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.3Å
Ligands:, , , , , , , , , , , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

RL2_HALMA One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome (By similarity).[HAMAP-Rule:MF_01320_A]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Peptide bond formation is catalyzed at the peptidyl transferase center (PTC) of the large ribosomal subunit. Crystal structures of the large ribosomal subunit of Haloarcula marismortui (Hma) complexed with several analogs that represent either the substrates or the transition state intermediate of the peptidyl transferase reaction show that this reaction proceeds through a tetrahedral intermediate with S chirality. The oxyanion of the tetrahedral intermediate interacts with a water molecule that is positioned by nucleotides A2637 (E. coli numbering, 2602) and (methyl)U2619(2584). There are no Mg2+ ions or monovalent metal ions observed in the PTC that could directly promote catalysis. The A76 2' hydroxyl of the peptidyl-tRNA is hydrogen bonded to the alpha-amino group and could facilitate peptide bond formation by substrate positioning and by acting as a proton shuttle between the alpha-amino group and the A76 3' hydroxyl of the peptidyl-tRNA.

Structural insights into the roles of water and the 2' hydroxyl of the P site tRNA in the peptidyl transferase reaction.,Schmeing TM, Huang KS, Kitchen DE, Strobel SA, Steitz TA Mol Cell. 2005 Nov 11;20(3):437-48. PMID:16285925[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Schmeing TM, Huang KS, Kitchen DE, Strobel SA, Steitz TA. Structural insights into the roles of water and the 2' hydroxyl of the P site tRNA in the peptidyl transferase reaction. Mol Cell. 2005 Nov 11;20(3):437-48. PMID:16285925 doi:http://dx.doi.org/10.1016/j.molcel.2005.09.006

1vqm, resolution 2.30Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA