1u35: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 3: Line 3:
<StructureSection load='1u35' size='340' side='right'caption='[[1u35]], [[Resolution|resolution]] 3.00&Aring;' scene=''>
<StructureSection load='1u35' size='340' side='right'caption='[[1u35]], [[Resolution|resolution]] 3.00&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[1u35]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/ ], [https://en.wikipedia.org/wiki/Human Human] and [https://en.wikipedia.org/wiki/Lk3_transgenic_mice Lk3 transgenic mice]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1U35 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1U35 FirstGlance]. <br>
<table><tr><td colspan='2'>[[1u35]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1U35 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1U35 FirstGlance]. <br>
</td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1aoi|1aoi]], [[1f66|1f66]]</div></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3&#8491;</td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">H3FA, H3FC, H3FD, H3FF, H3FH, H3FI, H3FJ, H3FK, H3FL ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10090 LK3 transgenic mice])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1u35 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1u35 OCA], [https://pdbe.org/1u35 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1u35 RCSB], [https://www.ebi.ac.uk/pdbsum/1u35 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1u35 ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1u35 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1u35 OCA], [https://pdbe.org/1u35 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1u35 RCSB], [https://www.ebi.ac.uk/pdbsum/1u35 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1u35 ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[https://www.uniprot.org/uniprot/H2AY_HUMAN H2AY_HUMAN]] Variant histone H2A which replaces conventional H2A in a subset of nucleosomes where it represses transcription. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. Involved in stable X chromosome inactivation. Inhibits the binding of transcription factors and interferes with the activity of remodeling SWI/SNF complexes. Inhibits histone acetylation by EP300 and recruits class I HDACs, which induces a hypoacetylated state of chromatin. In addition, isoform 1, but not isoform 2, binds ADP-ribose and O-acetyl-ADP-ribose, and may be involved in ADP-ribose-mediated chromatin modulation.<ref>PMID:12718888</ref> <ref>PMID:15621527</ref> <ref>PMID:15897469</ref> <ref>PMID:16428466</ref> <ref>PMID:16107708</ref>  [[https://www.uniprot.org/uniprot/H2B3A_MOUSE H2B3A_MOUSE]] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
[https://www.uniprot.org/uniprot/H31_MOUSE H31_MOUSE]  
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 36: Line 35:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Human]]
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Lk3 transgenic mice]]
[[Category: Mus musculus]]
[[Category: Caron, C]]
[[Category: Caron C]]
[[Category: Chakravarthy, S]]
[[Category: Chakravarthy S]]
[[Category: Gundimella, S K]]
[[Category: Gundimella SK]]
[[Category: Khochbin, S]]
[[Category: Khochbin S]]
[[Category: Luger, K]]
[[Category: Luger K]]
[[Category: Pehrson, J R]]
[[Category: Pehrson JR]]
[[Category: Perche, P Y]]
[[Category: Perche PY]]
[[Category: Histone fold]]
[[Category: Histone variant]]
[[Category: Macroh2a]]
[[Category: Ncp]]
[[Category: Nucleosome]]
[[Category: Structural protein-dna complex]]

Latest revision as of 09:37, 23 August 2023

Crystal structure of the nucleosome core particle containing the histone domain of macroH2ACrystal structure of the nucleosome core particle containing the histone domain of macroH2A

Structural highlights

1u35 is a 10 chain structure with sequence from Homo sapiens and Mus musculus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

H31_MOUSE

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

macroH2A is an H2A variant with a highly unusual structural organization. It has a C-terminal domain connected to the N-terminal histone domain by a linker. Crystallographic and biochemical studies show that changes in the L1 loop in the histone fold region of macroH2A impact the structure and potentially the function of nucleosomes. The 1.6-A X-ray structure of the nonhistone region reveals an alpha/beta fold which has previously been found in a functionally diverse group of proteins. This region associates with histone deacetylases and affects the acetylation status of nucleosomes containing macroH2A. Thus, the unusual domain structure of macroH2A integrates independent functions that are instrumental in establishing a structurally and functionally unique chromatin domain.

Structural characterization of the histone variant macroH2A.,Chakravarthy S, Gundimella SK, Caron C, Perche PY, Pehrson JR, Khochbin S, Luger K Mol Cell Biol. 2005 Sep;25(17):7616-24. PMID:16107708[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Chakravarthy S, Gundimella SK, Caron C, Perche PY, Pehrson JR, Khochbin S, Luger K. Structural characterization of the histone variant macroH2A. Mol Cell Biol. 2005 Sep;25(17):7616-24. PMID:16107708 doi:http://dx.doi.org/25/17/7616

1u35, resolution 3.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA