1s3p: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Seed}}
[[Image:1s3p.png|left|200px]]


<!--
==Crystal structure of rat alpha-parvalbumin S55D/E59D mutant==
The line below this paragraph, containing "STRUCTURE_1s3p", creates the "Structure Box" on the page.
<StructureSection load='1s3p' size='340' side='right'caption='[[1s3p]], [[Resolution|resolution]] 2.00&Aring;' scene=''>
You may change the PDB parameter (which sets the PDB file loaded into the applet)
== Structural highlights ==
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
<table><tr><td colspan='2'>[[1s3p]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Rattus_norvegicus Rattus norvegicus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1S3P OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1S3P FirstGlance]. <br>
or leave the SCENE parameter empty for the default display.
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2&#8491;</td></tr>
-->
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
{{STRUCTURE_1s3p|  PDB=1s3p  |  SCENE=  }}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1s3p FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1s3p OCA], [https://pdbe.org/1s3p PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1s3p RCSB], [https://www.ebi.ac.uk/pdbsum/1s3p PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1s3p ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/PRVA_RAT PRVA_RAT] In muscle, parvalbumin is thought to be involved in relaxation after contraction. It binds two calcium ions.
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/s3/1s3p_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1s3p ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
In model peptide systems, Ca2+ affinity is maximized in EF-hand motifs containing four carboxylates positioned on the +x and -x and +z and -z axes; introduction of a fifth carboxylate ligand reduces the affinity. However, in rat beta-parvalbumin, replacement of Ser-55 with aspartate heightens divalent ion affinity [Henzl, M. T., et al. (1996) Biochemistry 35, 5856-5869]. The corresponding alpha-parvalbumin variant (S55D/E59D) likewise exhibits elevated affinity [Henzl, M. T., et al. (2003) Anal. Biochem. 319, 216-233]. To determine whether these mutations produce a variation on the archetypal EF-hand coordination scheme, we have obtained high-resolution X-ray crystallographic data for alpha S55D/E59D. As anticipated, the aspartyl carboxylate replaces the serine hydroxyl at the +z coordination position. Interestingly, the Asp-59 carboxylate abandons the role it plays as an outer sphere ligand in wild-type rat beta, rotating away from the Ca2+ and, instead, forming a hydrogen bond with the amide of Glu-62. Superficially, the coordination sphere in the CD site of alpha S55D/E59D resembles that in the EF site. However, the orientation of the Asp-59 side chain is predicted to stabilize the D-helix, which may contribute to the heightened divalent ion affinity. DSC data indicate that the alpha S55D/E59D variant retains the capacity to bind 1 equiv of Na+. Consistent with this finding, when binding measurements are conducted in K(+)-containing buffer, divalent ion affinity is markedly higher. In 0.15 M KCl and 0.025 M Hepes-KOH (pH 7.4) at 5 degrees C, the macroscopic Ca2+ binding constants are 1.8 x 10(10) and 2.0 x 10(9) M(-1). The corresponding Mg2+ binding constants are 2.7 x 10(6) and 1.2 x 10(5) M(-1).


===Crystal structure of rat alpha-parvalbumin S55D/E59D mutant===
Crystal structure of a high-affinity variant of rat alpha-parvalbumin.,Lee YH, Tanner JJ, Larson JD, Henzl MT Biochemistry. 2004 Aug 10;43(31):10008-17. PMID:15287728<ref>PMID:15287728</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1s3p" style="background-color:#fffaf0;"></div>


<!--
==See Also==
The line below this paragraph, {{ABSTRACT_PUBMED_15287728}}, adds the Publication Abstract to the page
*[[Parvalbumin|Parvalbumin]]
(as it appears on PubMed at http://www.pubmed.gov), where 15287728 is the PubMed ID number.
== References ==
-->
<references/>
{{ABSTRACT_PUBMED_15287728}}
__TOC__
 
</StructureSection>
==About this Structure==
[[Category: Large Structures]]
1S3P is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Rattus_norvegicus Rattus norvegicus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1S3P OCA].
 
==Reference==
Crystal structure of a high-affinity variant of rat alpha-parvalbumin., Lee YH, Tanner JJ, Larson JD, Henzl MT, Biochemistry. 2004 Aug 10;43(31):10008-17. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/15287728 15287728]
[[Category: Rattus norvegicus]]
[[Category: Rattus norvegicus]]
[[Category: Single protein]]
[[Category: Henzl MT]]
[[Category: Henzl, M T.]]
[[Category: Tanner JJ]]
[[Category: Tanner, J J.]]
[[Category: Calcium-binding protein]]
[[Category: Ef-hand]]
[[Category: Parvalbumin]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Mon Jul 28 14:58:04 2008''

Latest revision as of 09:12, 23 August 2023

Crystal structure of rat alpha-parvalbumin S55D/E59D mutantCrystal structure of rat alpha-parvalbumin S55D/E59D mutant

Structural highlights

1s3p is a 1 chain structure with sequence from Rattus norvegicus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PRVA_RAT In muscle, parvalbumin is thought to be involved in relaxation after contraction. It binds two calcium ions.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

In model peptide systems, Ca2+ affinity is maximized in EF-hand motifs containing four carboxylates positioned on the +x and -x and +z and -z axes; introduction of a fifth carboxylate ligand reduces the affinity. However, in rat beta-parvalbumin, replacement of Ser-55 with aspartate heightens divalent ion affinity [Henzl, M. T., et al. (1996) Biochemistry 35, 5856-5869]. The corresponding alpha-parvalbumin variant (S55D/E59D) likewise exhibits elevated affinity [Henzl, M. T., et al. (2003) Anal. Biochem. 319, 216-233]. To determine whether these mutations produce a variation on the archetypal EF-hand coordination scheme, we have obtained high-resolution X-ray crystallographic data for alpha S55D/E59D. As anticipated, the aspartyl carboxylate replaces the serine hydroxyl at the +z coordination position. Interestingly, the Asp-59 carboxylate abandons the role it plays as an outer sphere ligand in wild-type rat beta, rotating away from the Ca2+ and, instead, forming a hydrogen bond with the amide of Glu-62. Superficially, the coordination sphere in the CD site of alpha S55D/E59D resembles that in the EF site. However, the orientation of the Asp-59 side chain is predicted to stabilize the D-helix, which may contribute to the heightened divalent ion affinity. DSC data indicate that the alpha S55D/E59D variant retains the capacity to bind 1 equiv of Na+. Consistent with this finding, when binding measurements are conducted in K(+)-containing buffer, divalent ion affinity is markedly higher. In 0.15 M KCl and 0.025 M Hepes-KOH (pH 7.4) at 5 degrees C, the macroscopic Ca2+ binding constants are 1.8 x 10(10) and 2.0 x 10(9) M(-1). The corresponding Mg2+ binding constants are 2.7 x 10(6) and 1.2 x 10(5) M(-1).

Crystal structure of a high-affinity variant of rat alpha-parvalbumin.,Lee YH, Tanner JJ, Larson JD, Henzl MT Biochemistry. 2004 Aug 10;43(31):10008-17. PMID:15287728[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Lee YH, Tanner JJ, Larson JD, Henzl MT. Crystal structure of a high-affinity variant of rat alpha-parvalbumin. Biochemistry. 2004 Aug 10;43(31):10008-17. PMID:15287728 doi:10.1021/bi0492915

1s3p, resolution 2.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA