1rzm: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(9 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Seed}}
[[Image:1rzm.png|left|200px]]


<!--
==Crystal structure of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (DAHPS) from Thermotoga maritima complexed with Cd2+, PEP and E4P==
The line below this paragraph, containing "STRUCTURE_1rzm", creates the "Structure Box" on the page.
<StructureSection load='1rzm' size='340' side='right'caption='[[1rzm]], [[Resolution|resolution]] 2.20&Aring;' scene=''>
You may change the PDB parameter (which sets the PDB file loaded into the applet)  
== Structural highlights ==
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
<table><tr><td colspan='2'>[[1rzm]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Thermotoga_maritima Thermotoga maritima]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1RZM OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1RZM FirstGlance]. <br>
or leave the SCENE parameter empty for the default display.
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.2&#8491;</td></tr>
-->
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CD:CADMIUM+ION'>CD</scene>, <scene name='pdbligand=E4P:ERYTHOSE-4-PHOSPHATE'>E4P</scene>, <scene name='pdbligand=PEP:PHOSPHOENOLPYRUVATE'>PEP</scene></td></tr>
{{STRUCTURE_1rzm|  PDB=1rzm  |  SCENE=  }}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1rzm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1rzm OCA], [https://pdbe.org/1rzm PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1rzm RCSB], [https://www.ebi.ac.uk/pdbsum/1rzm PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1rzm ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/AROF_THEMA AROF_THEMA] Catalyzes the condensation of phosphoenolpyruvate (PEP) and D-erythrose-4-phosphate (E4P) giving rise to 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP).
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/rz/1rzm_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1rzm ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
3-Deoxy-d-arabino-heptulosonate-7-phosphate synthase (DAHPS) catalyzes the first reaction of the aromatic biosynthetic pathway in bacteria, fungi, and plants, the condensation of phosphoenolpyruvate (PEP) and d-erythrose-4-phosphate (E4P) with the formation of DAHP. Crystals of DAHPS from Thermotoga maritima (DAHPS(Tm)) were grown in the presence of PEP and metal cofactor, Cd(2+), and then soaked with E4P at 4 degrees C where the catalytic activity of the enzyme is negligible. The crystal structure of the "frozen" reaction complex was determined at 2.2A resolution. The subunit of the DAHPS(Tm) homotetramer consists of an N-terminal ferredoxin-like (FL) domain and a (beta/alpha)(8)-barrel domain. The active site located at the C-end of the barrel contains Cd(2+), PEP, and E4P, the latter bound in a non-productive conformation. The productive conformation of E4P is suggested and a catalytic mechanism of DAHPS is proposed. The active site of DAHPS(Tm) is nearly identical to the active sites of the other two known DAHPS structures from Escherichia coli (DAHPS(Ec)) and Saccharomyces cerevisiae (DAHPS(Sc)). However, the secondary, tertiary, and quaternary structures of DAHPS(Tm) are more similar to the functionally related enzyme, 3-deoxy-d-manno-octulosonate-8-phosphate synthase (KDOPS) from E.coli and Aquiflex aeolicus, than to DAHPS(Ec) and DAHPS(Sc). Although DAHPS(Tm) is feedback-regulated by tyrosine and phenylalanine, it lacks the extra barrel segments that are required for feedback inhibition in DAHPS(Ec) and DAHPS(Sc). A sequence similarity search revealed that DAHPSs of phylogenetic family Ibeta possess a FL domain like DAHPS(Tm) while those of family Ialpha have extra barrel segments similar to those of DAHPS(Ec) and DAHPS(Sc). This indicates that the mechanism of feedback regulation in DAHPS(Tm) and other family Ibeta enzymes is different from that of family Ialpha enzymes, most likely being mediated by the FL domain.


===Crystal structure of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (DAHPS) from Thermotoga maritima complexed with Cd2+, PEP and E4P===
Crystal structure of the reaction complex of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Thermotoga maritima refines the catalytic mechanism and indicates a new mechanism of allosteric regulation.,Shumilin IA, Bauerle R, Wu J, Woodard RW, Kretsinger RH J Mol Biol. 2004 Aug 6;341(2):455-66. PMID:15276836<ref>PMID:15276836</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1rzm" style="background-color:#fffaf0;"></div>


<!--
==See Also==
The line below this paragraph, {{ABSTRACT_PUBMED_15276836}}, adds the Publication Abstract to the page
*[[DAHP synthase 3D structures|DAHP synthase 3D structures]]
(as it appears on PubMed at http://www.pubmed.gov), where 15276836 is the PubMed ID number.
== References ==
-->
<references/>
{{ABSTRACT_PUBMED_15276836}}
__TOC__
 
</StructureSection>
==About this Structure==
[[Category: Large Structures]]
1RZM is a 2 chains structure of sequences from [http://en.wikipedia.org/wiki/Thermotoga_maritima Thermotoga maritima]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1RZM OCA].
 
==Reference==
<ref group="xtra">PMID:15276836</ref><references group="xtra"/>
[[Category: 3-deoxy-7-phosphoheptulonate synthase]]
[[Category: Thermotoga maritima]]
[[Category: Thermotoga maritima]]
[[Category: Bauerle, R.]]
[[Category: Bauerle R]]
[[Category: Kretsinger, R H.]]
[[Category: Kretsinger RH]]
[[Category: Shumilin, I A.]]
[[Category: Shumilin IA]]
[[Category: Woodard, R W.]]
[[Category: Woodard RW]]
[[Category: Wu, J.]]
[[Category: Wu J]]
[[Category: Tim barrel]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Mon Feb 16 11:25:43 2009''

Latest revision as of 09:10, 23 August 2023

Crystal structure of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (DAHPS) from Thermotoga maritima complexed with Cd2+, PEP and E4PCrystal structure of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (DAHPS) from Thermotoga maritima complexed with Cd2+, PEP and E4P

Structural highlights

1rzm is a 2 chain structure with sequence from Thermotoga maritima. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.2Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

AROF_THEMA Catalyzes the condensation of phosphoenolpyruvate (PEP) and D-erythrose-4-phosphate (E4P) giving rise to 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP).

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

3-Deoxy-d-arabino-heptulosonate-7-phosphate synthase (DAHPS) catalyzes the first reaction of the aromatic biosynthetic pathway in bacteria, fungi, and plants, the condensation of phosphoenolpyruvate (PEP) and d-erythrose-4-phosphate (E4P) with the formation of DAHP. Crystals of DAHPS from Thermotoga maritima (DAHPS(Tm)) were grown in the presence of PEP and metal cofactor, Cd(2+), and then soaked with E4P at 4 degrees C where the catalytic activity of the enzyme is negligible. The crystal structure of the "frozen" reaction complex was determined at 2.2A resolution. The subunit of the DAHPS(Tm) homotetramer consists of an N-terminal ferredoxin-like (FL) domain and a (beta/alpha)(8)-barrel domain. The active site located at the C-end of the barrel contains Cd(2+), PEP, and E4P, the latter bound in a non-productive conformation. The productive conformation of E4P is suggested and a catalytic mechanism of DAHPS is proposed. The active site of DAHPS(Tm) is nearly identical to the active sites of the other two known DAHPS structures from Escherichia coli (DAHPS(Ec)) and Saccharomyces cerevisiae (DAHPS(Sc)). However, the secondary, tertiary, and quaternary structures of DAHPS(Tm) are more similar to the functionally related enzyme, 3-deoxy-d-manno-octulosonate-8-phosphate synthase (KDOPS) from E.coli and Aquiflex aeolicus, than to DAHPS(Ec) and DAHPS(Sc). Although DAHPS(Tm) is feedback-regulated by tyrosine and phenylalanine, it lacks the extra barrel segments that are required for feedback inhibition in DAHPS(Ec) and DAHPS(Sc). A sequence similarity search revealed that DAHPSs of phylogenetic family Ibeta possess a FL domain like DAHPS(Tm) while those of family Ialpha have extra barrel segments similar to those of DAHPS(Ec) and DAHPS(Sc). This indicates that the mechanism of feedback regulation in DAHPS(Tm) and other family Ibeta enzymes is different from that of family Ialpha enzymes, most likely being mediated by the FL domain.

Crystal structure of the reaction complex of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Thermotoga maritima refines the catalytic mechanism and indicates a new mechanism of allosteric regulation.,Shumilin IA, Bauerle R, Wu J, Woodard RW, Kretsinger RH J Mol Biol. 2004 Aug 6;341(2):455-66. PMID:15276836[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Shumilin IA, Bauerle R, Wu J, Woodard RW, Kretsinger RH. Crystal structure of the reaction complex of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Thermotoga maritima refines the catalytic mechanism and indicates a new mechanism of allosteric regulation. J Mol Biol. 2004 Aug 6;341(2):455-66. PMID:15276836 doi:10.1016/j.jmb.2004.05.077

1rzm, resolution 2.20Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA