1rrs: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(10 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Seed}}
[[Image:1rrs.png|left|200px]]


<!--
==MutY adenine glycosylase in complex with DNA containing an abasic site==
The line below this paragraph, containing "STRUCTURE_1rrs", creates the "Structure Box" on the page.
<StructureSection load='1rrs' size='340' side='right'caption='[[1rrs]], [[Resolution|resolution]] 2.40&Aring;' scene=''>
You may change the PDB parameter (which sets the PDB file loaded into the applet)
== Structural highlights ==
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
<table><tr><td colspan='2'>[[1rrs]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Geobacillus_stearothermophilus Geobacillus stearothermophilus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1RRS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1RRS FirstGlance]. <br>
or leave the SCENE parameter empty for the default display.
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.4&#8491;</td></tr>
-->
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=8OG:8-OXO-2-DEOXY-GUANOSINE-5-MONOPHOSPHATE'>8OG</scene>, <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=HPD:1-HYDROXY-PENTANE-3,4-DIOL-5-PHOSPHATE'>HPD</scene>, <scene name='pdbligand=SF4:IRON/SULFUR+CLUSTER'>SF4</scene></td></tr>
{{STRUCTURE_1rrs|  PDB=1rrs  |  SCENE=  }}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1rrs FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1rrs OCA], [https://pdbe.org/1rrs PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1rrs RCSB], [https://www.ebi.ac.uk/pdbsum/1rrs PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1rrs ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/MUTY_GEOSE MUTY_GEOSE] Base excision repair (BER) glycosylase that initiates repair of A:oxoG to C:G by removing the inappropriately paired adenine base from the DNA backbone, generating an abasic site product (PubMed:25995449) (PubMed:14961129). 8-oxoguanine (oxoG) is a genotoxic DNA lesion resulting from oxidation of guanine; this residue is misread by replicative DNA polymerases, that insert adenine instead of cytosine opposite the oxidized damaged base. Shows a powerful dicrimination of A versus C, since it does not cleave cytosine in oxoG:C pairs (PubMed:25995449). May also be able to remove adenine from A:G mispairs, although this activity may not be physiologically relevant (PubMed:14961129).<ref>PMID:25995449</ref> <ref>PMID:14961129</ref>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/rr/1rrs_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1rrs ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The genomes of aerobic organisms suffer chronic oxidation of guanine to the genotoxic product 8-oxoguanine (oxoG). Replicative DNA polymerases misread oxoG residues and insert adenine instead of cytosine opposite the oxidized base. Both bases in the resulting A*oxoG mispair are mutagenic lesions, and both must undergo base-specific replacement to restore the original C*G pair. Doing so represents a formidable challenge to the DNA repair machinery, because adenine makes up roughly 25% of the bases in most genomes. The evolutionarily conserved enzyme adenine DNA glycosylase (called MutY in bacteria and hMYH in humans) initiates repair of A*oxoG to C*G by removing the inappropriately paired adenine base from the DNA backbone. A central issue concerning MutY function is the mechanism by which A*oxoG mispairs are targeted among the vast excess of A*T pairs. Here we report the use of disulphide crosslinking to obtain high-resolution crystal structures of MutY-DNA lesion-recognition complexes. These structures reveal the basis for recognizing both lesions in the A*oxoG pair and for catalysing removal of the adenine base.


===MutY adenine glycosylase in complex with DNA containing an abasic site===
Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase.,Fromme JC, Banerjee A, Huang SJ, Verdine GL Nature. 2004 Feb 12;427(6975):652-6. PMID:14961129<ref>PMID:14961129</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1rrs" style="background-color:#fffaf0;"></div>


<!--
==See Also==
The line below this paragraph, {{ABSTRACT_PUBMED_14961129}}, adds the Publication Abstract to the page
*[[DNA glycosylase|DNA glycosylase]]
(as it appears on PubMed at http://www.pubmed.gov), where 14961129 is the PubMed ID number.
*[[DNA glycosylase 3D structures|DNA glycosylase 3D structures]]
-->
*[[Iron–sulfur proteins|Iron–sulfur proteins]]
{{ABSTRACT_PUBMED_14961129}}
== References ==
 
<references/>
==About this Structure==
__TOC__
1RRS is a 3 chains structure of sequences from [http://en.wikipedia.org/wiki/Geobacillus_stearothermophilus Geobacillus stearothermophilus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1RRS OCA].
</StructureSection>
 
==Reference==
<ref group="xtra">PMID:14961129</ref><references group="xtra"/>
[[Category: Geobacillus stearothermophilus]]
[[Category: Geobacillus stearothermophilus]]
[[Category: Banerjee, A.]]
[[Category: Large Structures]]
[[Category: Fromme, J C.]]
[[Category: Banerjee A]]
[[Category: Huang, S J.]]
[[Category: Fromme JC]]
[[Category: Verdine, G L.]]
[[Category: Huang SJ]]
[[Category: 8-oxoguanine]]
[[Category: Verdine GL]]
[[Category: Dna glycosylase]]
[[Category: Dna repair]]
[[Category: Protein-dna complex]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Mon Feb 16 11:30:45 2009''

Latest revision as of 09:07, 23 August 2023

MutY adenine glycosylase in complex with DNA containing an abasic siteMutY adenine glycosylase in complex with DNA containing an abasic site

Structural highlights

1rrs is a 3 chain structure with sequence from Geobacillus stearothermophilus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.4Å
Ligands:, , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

MUTY_GEOSE Base excision repair (BER) glycosylase that initiates repair of A:oxoG to C:G by removing the inappropriately paired adenine base from the DNA backbone, generating an abasic site product (PubMed:25995449) (PubMed:14961129). 8-oxoguanine (oxoG) is a genotoxic DNA lesion resulting from oxidation of guanine; this residue is misread by replicative DNA polymerases, that insert adenine instead of cytosine opposite the oxidized damaged base. Shows a powerful dicrimination of A versus C, since it does not cleave cytosine in oxoG:C pairs (PubMed:25995449). May also be able to remove adenine from A:G mispairs, although this activity may not be physiologically relevant (PubMed:14961129).[1] [2]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The genomes of aerobic organisms suffer chronic oxidation of guanine to the genotoxic product 8-oxoguanine (oxoG). Replicative DNA polymerases misread oxoG residues and insert adenine instead of cytosine opposite the oxidized base. Both bases in the resulting A*oxoG mispair are mutagenic lesions, and both must undergo base-specific replacement to restore the original C*G pair. Doing so represents a formidable challenge to the DNA repair machinery, because adenine makes up roughly 25% of the bases in most genomes. The evolutionarily conserved enzyme adenine DNA glycosylase (called MutY in bacteria and hMYH in humans) initiates repair of A*oxoG to C*G by removing the inappropriately paired adenine base from the DNA backbone. A central issue concerning MutY function is the mechanism by which A*oxoG mispairs are targeted among the vast excess of A*T pairs. Here we report the use of disulphide crosslinking to obtain high-resolution crystal structures of MutY-DNA lesion-recognition complexes. These structures reveal the basis for recognizing both lesions in the A*oxoG pair and for catalysing removal of the adenine base.

Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase.,Fromme JC, Banerjee A, Huang SJ, Verdine GL Nature. 2004 Feb 12;427(6975):652-6. PMID:14961129[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Wang L, Lee SJ, Verdine G. Structural Basis for Avoidance of Promutagenic DNA Repair by MutY Adenine DNA Glycosylase. J Biol Chem. 2015 May 20. pii: jbc.M115.657866. PMID:25995449 doi:http://dx.doi.org/10.1074/jbc.M115.657866
  2. Fromme JC, Banerjee A, Huang SJ, Verdine GL. Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase. Nature. 2004 Feb 12;427(6975):652-6. PMID:14961129 doi:10.1038/nature02306
  3. Fromme JC, Banerjee A, Huang SJ, Verdine GL. Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase. Nature. 2004 Feb 12;427(6975):652-6. PMID:14961129 doi:10.1038/nature02306

1rrs, resolution 2.40Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA