2o7h: Difference between revisions

No edit summary
No edit summary
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:2o7h.jpg|left|200px]]<br /><applet load="2o7h" size="350" color="white" frame="true" align="right" spinBox="true"
caption="2o7h, resolution 1.86&Aring;" />
'''Crystal structure of trimeric coiled coil GCN4 leucine zipper'''<br />


==About this Structure==
==Crystal structure of trimeric coiled coil GCN4 leucine zipper==
2O7H is a [http://en.wikipedia.org/wiki/Single_protein Single protein] structure of sequence from [http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2O7H OCA].  
<StructureSection load='2o7h' size='340' side='right'caption='[[2o7h]], [[Resolution|resolution]] 1.86&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[2o7h]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2O7H OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2O7H FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.86&#8491;</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2o7h FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2o7h OCA], [https://pdbe.org/2o7h PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2o7h RCSB], [https://www.ebi.ac.uk/pdbsum/2o7h PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2o7h ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/GCN4_YEAST GCN4_YEAST] Is a transcription factor that is responsible for the activation of more than 30 genes required for amino acid or for purine biosynthesis in response to amino acid or purine starvation. Binds and recognize the DNA sequence: 5'-TGA[CG]TCA-3'.
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Coiled coils are extensively and successfully used nowadays to rationally design multistranded structures for applications, including basic research, biotechnology, nanotechnology, materials science, and medicine. The wide range of applications as well as the important functions these structures play in almost all biological processes highlight the need for a detailed understanding of the factors that control coiled-coil folding and oligomerization. Here, we address the important and unresolved question why the presence of particular oligomerization-state determinants within a coiled coil does frequently not correlate with its topology. We found an unexpected, general link between coiled-coil oligomerization-state specificity and trigger sequences, elements that are indispensable for coiled-coil formation. By using the archetype coiled-coil domain of the yeast transcriptional activator GCN4 as a model system, we show that well-established trimer-specific oligomerization-state determinants switch the peptide's topology from a dimer to a trimer only when inserted into the trigger sequence. We successfully confirmed our results in two other, unrelated coiled-coil dimers, ATF1 and cortexillin-1. We furthermore show that multiple topology determinants can coexist in the same trigger sequence, revealing a delicate balance of the resulting oligomerization state by position-dependent forces. Our experimental results should significantly improve the prediction of the oligomerization state of coiled coils. They therefore should have major implications for the rational design of coiled coils and consequently many applications using these popular oligomerization domains.
 
Molecular basis of coiled-coil oligomerization-state specificity.,Ciani B, Bjelic S, Honnappa S, Jawhari H, Jaussi R, Payapilly A, Jowitt T, Steinmetz MO, Kammerer RA Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19850-5. Epub 2010 Nov 2. PMID:21045134<ref>PMID:21045134</ref>
 
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 2o7h" style="background-color:#fffaf0;"></div>
 
==See Also==
*[[Gcn4 3D Structures|Gcn4 3D Structures]]
*[[Gnc4 3D Structures|Gnc4 3D Structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Large Structures]]
[[Category: Saccharomyces cerevisiae]]
[[Category: Saccharomyces cerevisiae]]
[[Category: Single protein]]
[[Category: Honnappa S]]
[[Category: Honnappa, S.]]
[[Category: Jawhari H]]
[[Category: Jawhari, H.]]
[[Category: Steinmetz MO]]
[[Category: Steinmetz, M O.]]
[[Category: activator]]
[[Category: amino-acid biosynthesis]]
[[Category: dna-binding]]
[[Category: nuclear protein]]
[[Category: transcription regulation]]
[[Category: trimeric coiled coil]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Feb 21 18:15:17 2008''

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA