1ze7: Difference between revisions
No edit summary |
No edit summary |
||
(10 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
< | ==Zinc-binding domain of Alzheimer's disease amyloid beta-peptide in water solution at pH 6.5== | ||
<StructureSection load='1ze7' size='340' side='right'caption='[[1ze7]]' scene=''> | |||
== Structural highlights == | |||
or the | <table><tr><td colspan='2'>[[1ze7]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1ZE7 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1ZE7 FirstGlance]. <br> | ||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr> | |||
- | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACE:ACETYL+GROUP'>ACE</scene>, <scene name='pdbligand=NH2:AMINO+GROUP'>NH2</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1ze7 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ze7 OCA], [https://pdbe.org/1ze7 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1ze7 RCSB], [https://www.ebi.ac.uk/pdbsum/1ze7 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1ze7 ProSAT]</span></td></tr> | |||
</table> | |||
== Disease == | |||
[https://www.uniprot.org/uniprot/A4_HUMAN A4_HUMAN] Defects in APP are the cause of Alzheimer disease type 1 (AD1) [MIM:[https://omim.org/entry/104300 104300]. AD1 is a familial early-onset form of Alzheimer disease. It can be associated with cerebral amyloid angiopathy. Alzheimer disease is a neurodegenerative disorder characterized by progressive dementia, loss of cognitive abilities, and deposition of fibrillar amyloid proteins as intraneuronal neurofibrillary tangles, extracellular amyloid plaques and vascular amyloid deposits. The major constituent of these plaques is the neurotoxic amyloid-beta-APP 40-42 peptide (s), derived proteolytically from the transmembrane precursor protein APP by sequential secretase processing. The cytotoxic C-terminal fragments (CTFs) and the caspase-cleaved products such as C31 derived from APP, are also implicated in neuronal death.<ref>PMID:8476439</ref> <ref>PMID:15201367</ref> <ref>PMID:1671712</ref> <ref>PMID:1908231</ref> <ref>PMID:1678058</ref> <ref>PMID:1944558</ref> <ref>PMID:1925564</ref> <ref>PMID:1415269</ref> <ref>PMID:1303239</ref> <ref>PMID:1302033</ref> <ref>PMID:1303275</ref> <ref>PMID:8267572</ref> <ref>PMID:8290042</ref> <ref>PMID:8577393</ref> <ref>PMID:9328472</ref> <ref>PMID:9754958</ref> <ref>PMID:10097173</ref> <ref>PMID:10631141</ref> <ref>PMID:10665499</ref> <ref>PMID:10867787</ref> <ref>PMID:11063718</ref> <ref>PMID:11311152</ref> <ref>PMID:11528419</ref> <ref>PMID:12034808</ref> <ref>PMID:15365148</ref> <ref>PMID:15668448</ref> Defects in APP are the cause of cerebral amyloid angiopathy APP-related (CAA-APP) [MIM:[https://omim.org/entry/605714 605714]. A hereditary localized amyloidosis due to amyloid-beta A4 peptide(s) deposition in the cerebral vessels. The principal clinical characteristics are recurrent cerebral and cerebellar hemorrhages, recurrent strokes, cerebral ischemia, cerebral infarction, and progressive mental deterioration. Patients develop cerebral hemorrhage because of the severe cerebral amyloid angiopathy. Parenchymal amyloid deposits are rare and largely in the form of pre-amyloid lesions or diffuse plaque-like structures. They are Congo red negative and lack the dense amyloid cores commonly present in Alzheimer disease. Some affected individuals manifest progressive aphasic dementia, leukoencephalopathy, and occipital calcifications.<ref>PMID:10821838</ref> <ref>PMID:2111584</ref> <ref>PMID:11409420</ref> <ref>PMID:12654973</ref> <ref>PMID:16178030</ref> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/A4_HUMAN A4_HUMAN] Functions as a cell surface receptor and performs physiological functions on the surface of neurons relevant to neurite growth, neuronal adhesion and axonogenesis. Involved in cell mobility and transcription regulation through protein-protein interactions. Can promote transcription activation through binding to APBB1-KAT5 and inhibits Notch signaling through interaction with Numb. Couples to apoptosis-inducing pathways such as those mediated by G(O) and JIP. Inhibits G(o) alpha ATPase activity (By similarity). Acts as a kinesin I membrane receptor, mediating the axonal transport of beta-secretase and presenilin 1. Involved in copper homeostasis/oxidative stress through copper ion reduction. In vitro, copper-metallated APP induces neuronal death directly or is potentiated through Cu(2+)-mediated low-density lipoprotein oxidation. Can regulate neurite outgrowth through binding to components of the extracellular matrix such as heparin and collagen I and IV. The splice isoforms that contain the BPTI domain possess protease inhibitor activity. Induces a AGER-dependent pathway that involves activation of p38 MAPK, resulting in internalization of amyloid-beta peptide and leading to mitochondrial dysfunction in cultured cortical neurons. Provides Cu(2+) ions for GPC1 which are required for release of nitric oxide (NO) and subsequent degradation of the heparan sulfate chains on GPC1.<ref>PMID:9168929</ref> <ref>PMID:11544248</ref> <ref>PMID:11943163</ref> <ref>PMID:19225519</ref> <ref>PMID:19901339</ref> Beta-amyloid peptides are lipophilic metal chelators with metal-reducing activity. Bind transient metals such as copper, zinc and iron. In vitro, can reduce Cu(2+) and Fe(3+) to Cu(+) and Fe(2+), respectively. Beta-amyloid 42 is a more effective reductant than beta-amyloid 40. Beta-amyloid peptides bind to lipoproteins and apolipoproteins E and J in the CSF and to HDL particles in plasma, inhibiting metal-catalyzed oxidation of lipoproteins. Beta-APP42 may activate mononuclear phagocytes in the brain and elicit inflammatory responses. Promotes both tau aggregation and TPK II-mediated phosphorylation. Interaction with Also bind GPC1 in lipid rafts.<ref>PMID:9168929</ref> <ref>PMID:11544248</ref> <ref>PMID:11943163</ref> <ref>PMID:19225519</ref> <ref>PMID:19901339</ref> Appicans elicit adhesion of neural cells to the extracellular matrix and may regulate neurite outgrowth in the brain (By similarity).<ref>PMID:9168929</ref> <ref>PMID:11544248</ref> <ref>PMID:11943163</ref> <ref>PMID:19225519</ref> <ref>PMID:19901339</ref> The gamma-CTF peptides as well as the caspase-cleaved peptides, including C31, are potent enhancers of neuronal apoptosis.<ref>PMID:9168929</ref> <ref>PMID:11544248</ref> <ref>PMID:11943163</ref> <ref>PMID:19225519</ref> <ref>PMID:19901339</ref> N-APP binds TNFRSF21 triggering caspase activation and degeneration of both neuronal cell bodies (via caspase-3) and axons (via caspase-6).<ref>PMID:9168929</ref> <ref>PMID:11544248</ref> <ref>PMID:11943163</ref> <ref>PMID:19225519</ref> <ref>PMID:19901339</ref> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Amyloid deposits within the cerebral tissue constitute a characteristic lesion associated with Alzheimer disease. They mainly consist of the amyloid peptide Abeta and display an abnormal content in Zn(2+) ions, together with many truncated, isomerized, and racemized forms of Abeta. The region 1-16 of Abeta can be considered the minimal zinc-binding domain and contains two aspartates subject to protein aging. The influence of zinc binding and protein aging related modifications on the conformation of this region of Abeta is of importance given the potentiality of this domain to constitute a therapeutic target, especially for immunization approaches. In this study, we determined from NMR data the solution structure of the Abeta-(1-16)-Zn(2+) complex in aqueous solution at pH 6.5. The residues His(6), His(13), and His(14) and the Glu(11) carboxylate were identified as ligands that tetrahedrally coordinate the Zn(II) cation. In vitro aging experiments on Abeta-(1-16) led to the formation of truncated and isomerized species. The major isomer generated, Abeta-(1-16)-l-iso-Asp(7), displayed a local conformational change in the His(6)-Ser(8) region but kept a zinc binding propensity via a coordination mode involving l-iso-Asp(7). These results are discussed here with regard to Abeta fibrillogenesis and the potentiality of the region 1-16 of Abeta to be used as a therapeutic target. | |||
Structural changes of region 1-16 of the Alzheimer disease amyloid beta-peptide upon zinc binding and in vitro aging.,Zirah S, Kozin SA, Mazur AK, Blond A, Cheminant M, Segalas-Milazzo I, Debey P, Rebuffat S J Biol Chem. 2006 Jan 27;281(4):2151-61. Epub 2005 Nov 21. PMID:16301322<ref>PMID:16301322</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 1ze7" style="background-color:#fffaf0;"></div> | |||
== | ==See Also== | ||
*[[Amyloid precursor protein 3D structures|Amyloid precursor protein 3D structures]] | |||
[[Category: | == References == | ||
[[Category: Blond | <references/> | ||
[[Category: Cheminant | __TOC__ | ||
[[Category: Debey | </StructureSection> | ||
[[Category: Kozin | [[Category: Homo sapiens]] | ||
[[Category: Mazur | [[Category: Large Structures]] | ||
[[Category: Rebuffat | [[Category: Blond A]] | ||
[[Category: Segalas-Milazzo | [[Category: Cheminant M]] | ||
[[Category: Zirah | [[Category: Debey P]] | ||
[[Category: Kozin SA]] | |||
[[Category: Mazur AK]] | |||
[[Category: Rebuffat S]] | |||
[[Category: Segalas-Milazzo I]] | |||
[[Category: Zirah S]] |