8cs8: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[8cs8]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8CS8 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8CS8 FirstGlance]. <br> | <table><tr><td colspan='2'>[[8cs8]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8CS8 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8CS8 FirstGlance]. <br> | ||
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8cs8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8cs8 OCA], [https://pdbe.org/8cs8 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8cs8 RCSB], [https://www.ebi.ac.uk/pdbsum/8cs8 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8cs8 ProSAT]</span></td></tr> | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 6Å</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8cs8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8cs8 OCA], [https://pdbe.org/8cs8 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8cs8 RCSB], [https://www.ebi.ac.uk/pdbsum/8cs8 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8cs8 ProSAT]</span></td></tr> | |||
</table> | </table> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> |
Latest revision as of 13:15, 16 August 2023
[High G:C, High Vapor Diffusion] Self-Assembled 3D DNA Hexagonal Tensegrity Triangle[High G:C, High Vapor Diffusion] Self-Assembled 3D DNA Hexagonal Tensegrity Triangle
Structural highlights
Publication Abstract from PubMed<p class="Text" style="margin: 0in 0in 8pt; text-align: justify; line-height: 24px; font-size: 12pt; font-family: "Times New Roman", serif; color: rgb(0, 0, 0);">Non-canonical interactions in DNA remain under-explored in DNA nanotechnology. Recently, many structures with non-canonical motifs have been discovered, notably a hexagonal arrangement of typically rhombohedral DNA tensegrity triangles that forms through non-canonical sticky end interactions. Here, we find a series of mechanisms to program a hexagonal arrangement using: the sticky end sequence; triangle edge torsional stress; and crystallization condition. We showcase cross-talking between Watson-Crick and non-canonical sticky ends in which the ratio between the two dictates segregation by crystal forms or combination into composite crystals. Finally, we develop a method for reconfiguring the long-range geometry of formed crystals from rhombohedral to hexagonal and <italic>vice versa</italic>. These data demonstrate fine control over non-canonical motifs and their topological self-assembly. This will vastly increase the programmability, functionality, and versatility of rationally designed DNA constructs.<o:p></o:p></p>. Programmable 3D Hexagonal Geometry of DNA Tensegrity Triangles.,Lu B, Woloszyn K, Ohayon YP, Yang B, Zhang C, Mao C, Seeman NC, Vecchioni S, Sha R Angew Chem Int Ed Engl. 2022 Dec 15. doi: 10.1002/anie.202213451. PMID:36520622[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|