1qdc: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(14 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:1qdc.jpg|left|200px]]<br /><applet load="1qdc" size="350" color="white" frame="true" align="right" spinBox="true"
caption="1qdc, resolution 2.0&Aring;" />
'''MAN(APLHA1-6)MAN(ALPHA1-O)METHYL CONCANAVALIN A COMPLEX'''<br />


==Overview==
==MAN(APLHA1-6)MAN(ALPHA1-O)METHYL CONCANAVALIN A COMPLEX==
<StructureSection load='1qdc' size='340' side='right'caption='[[1qdc]], [[Resolution|resolution]] 2.00&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[1qdc]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Canavalia_ensiformis Canavalia ensiformis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1QDC OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1QDC FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=MAN:ALPHA-D-MANNOSE'>MAN</scene>, <scene name='pdbligand=MMA:O1-METHYL-MANNOSE'>MMA</scene>, <scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1qdc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1qdc OCA], [https://pdbe.org/1qdc PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1qdc RCSB], [https://www.ebi.ac.uk/pdbsum/1qdc PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1qdc ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/CONA_CANBR CONA_CANBR] Glucose/D-mannose specific lectin. Has anti-inflammatory activity in rats. Induces histamine release in mast cells from hamster and rat. Induces lymphocyte proliferation and IFNG production. Shows toxicity against the aquatic snail B.glabrata at concentrations higher than 20 ug/ml.<ref>PMID:1398779</ref> <ref>PMID:7524287</ref> <ref>PMID:8891754</ref> <ref>PMID:18472821</ref> <ref>PMID:9575151</ref> <ref>PMID:10747944</ref> <ref>PMID:19765980</ref>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/qd/1qdc_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1qdc ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The crystal structures of concanavalin A in complex with Man(alpha1-6)Man(alpha1-O)Me and Man(alpha1-3)Man(alpha1-O)Me were determined at resolutions of 2.0 and 2.8 A, respectively. In both structures, the O-1-linked mannose binds in the conserved monosaccharide-binding site. The O-3-linked mannose of Man(alpha1-3)Man(alpha1-O)Me binds in the hydrophobic subsite formed by Tyr-12, Tyr-100, and Leu-99. The shielding of a hydrophobic surface is consistent with the associated large heat capacity change. The O-6-linked mannose of Man(alpha1-6)Man(alpha1-O)Me binds in the same subsite formed by Tyr-12 and Asp-16 as the reducing mannose of the highly specific trimannose Man(alpha1-3)[Man(alpha1-6)]Man(alpha1-O)Me. However, it is much less tightly bound. Its O-2 hydroxyl makes no hydrogen bond with the conserved water 1. Water 1 is present in all the sugar-containing concanavalin A structures and increases the complementarity between the protein-binding surface and the sugar, but is not necessarily a hydrogen-bonding partner. A water analysis of the carbohydrate-binding site revealed a conserved water molecule replacing O-4 on the alpha1-3-linked arm of the trimannose. No such water is found for the reducing or O-6-linked mannose. Our data indicate that the central mannose of Man(alpha1-3)[Man(alpha1-6)]Man(alpha1-O)Me primarily functions as a hinge between the two outer subsites.
The crystal structures of concanavalin A in complex with Man(alpha1-6)Man(alpha1-O)Me and Man(alpha1-3)Man(alpha1-O)Me were determined at resolutions of 2.0 and 2.8 A, respectively. In both structures, the O-1-linked mannose binds in the conserved monosaccharide-binding site. The O-3-linked mannose of Man(alpha1-3)Man(alpha1-O)Me binds in the hydrophobic subsite formed by Tyr-12, Tyr-100, and Leu-99. The shielding of a hydrophobic surface is consistent with the associated large heat capacity change. The O-6-linked mannose of Man(alpha1-6)Man(alpha1-O)Me binds in the same subsite formed by Tyr-12 and Asp-16 as the reducing mannose of the highly specific trimannose Man(alpha1-3)[Man(alpha1-6)]Man(alpha1-O)Me. However, it is much less tightly bound. Its O-2 hydroxyl makes no hydrogen bond with the conserved water 1. Water 1 is present in all the sugar-containing concanavalin A structures and increases the complementarity between the protein-binding surface and the sugar, but is not necessarily a hydrogen-bonding partner. A water analysis of the carbohydrate-binding site revealed a conserved water molecule replacing O-4 on the alpha1-3-linked arm of the trimannose. No such water is found for the reducing or O-6-linked mannose. Our data indicate that the central mannose of Man(alpha1-3)[Man(alpha1-6)]Man(alpha1-O)Me primarily functions as a hinge between the two outer subsites.


==About this Structure==
The crystal structures of Man(alpha1-3)Man(alpha1-O)Me and Man(alpha1-6)Man(alpha1-O)Me in complex with concanavalin A.,Bouckaert J, Hamelryck TW, Wyns L, Loris R J Biol Chem. 1999 Oct 8;274(41):29188-95. PMID:10506175<ref>PMID:10506175</ref>
1QDC is a [http://en.wikipedia.org/wiki/Single_protein Single protein] structure of sequence from [http://en.wikipedia.org/wiki/Canavalia_ensiformis Canavalia ensiformis] with <scene name='pdbligand=MN:'>MN</scene>, <scene name='pdbligand=CA:'>CA</scene> and <scene name='pdbligand=CL:'>CL</scene> as [http://en.wikipedia.org/wiki/ligands ligands]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1QDC OCA].


==Reference==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
The crystal structures of Man(alpha1-3)Man(alpha1-O)Me and Man(alpha1-6)Man(alpha1-O)Me in complex with concanavalin A., Bouckaert J, Hamelryck TW, Wyns L, Loris R, J Biol Chem. 1999 Oct 8;274(41):29188-95. PMID:[http://ispc.weizmann.ac.il//pmbin/getpm?pmid=10506175 10506175]
</div>
<div class="pdbe-citations 1qdc" style="background-color:#fffaf0;"></div>
 
==See Also==
*[[Concanavalin|Concanavalin]]
*[[Concanavalin 3D structures|Concanavalin 3D structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Canavalia ensiformis]]
[[Category: Canavalia ensiformis]]
[[Category: Single protein]]
[[Category: Large Structures]]
[[Category: Bouckaert, J.]]
[[Category: Bouckaert J]]
[[Category: Loris, R.]]
[[Category: Loris R]]
[[Category: Wyns, L.]]
[[Category: Wyns L]]
[[Category: CA]]
[[Category: CL]]
[[Category: MN]]
[[Category: carbohydrate binding]]
[[Category: concanavalin a]]
[[Category: dimannose]]
[[Category: plant lectin]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Feb 21 14:38:27 2008''

Latest revision as of 13:01, 16 August 2023

MAN(APLHA1-6)MAN(ALPHA1-O)METHYL CONCANAVALIN A COMPLEXMAN(APLHA1-6)MAN(ALPHA1-O)METHYL CONCANAVALIN A COMPLEX

Structural highlights

1qdc is a 4 chain structure with sequence from Canavalia ensiformis. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2Å
Ligands:, , , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

CONA_CANBR Glucose/D-mannose specific lectin. Has anti-inflammatory activity in rats. Induces histamine release in mast cells from hamster and rat. Induces lymphocyte proliferation and IFNG production. Shows toxicity against the aquatic snail B.glabrata at concentrations higher than 20 ug/ml.[1] [2] [3] [4] [5] [6] [7]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The crystal structures of concanavalin A in complex with Man(alpha1-6)Man(alpha1-O)Me and Man(alpha1-3)Man(alpha1-O)Me were determined at resolutions of 2.0 and 2.8 A, respectively. In both structures, the O-1-linked mannose binds in the conserved monosaccharide-binding site. The O-3-linked mannose of Man(alpha1-3)Man(alpha1-O)Me binds in the hydrophobic subsite formed by Tyr-12, Tyr-100, and Leu-99. The shielding of a hydrophobic surface is consistent with the associated large heat capacity change. The O-6-linked mannose of Man(alpha1-6)Man(alpha1-O)Me binds in the same subsite formed by Tyr-12 and Asp-16 as the reducing mannose of the highly specific trimannose Man(alpha1-3)[Man(alpha1-6)]Man(alpha1-O)Me. However, it is much less tightly bound. Its O-2 hydroxyl makes no hydrogen bond with the conserved water 1. Water 1 is present in all the sugar-containing concanavalin A structures and increases the complementarity between the protein-binding surface and the sugar, but is not necessarily a hydrogen-bonding partner. A water analysis of the carbohydrate-binding site revealed a conserved water molecule replacing O-4 on the alpha1-3-linked arm of the trimannose. No such water is found for the reducing or O-6-linked mannose. Our data indicate that the central mannose of Man(alpha1-3)[Man(alpha1-6)]Man(alpha1-O)Me primarily functions as a hinge between the two outer subsites.

The crystal structures of Man(alpha1-3)Man(alpha1-O)Me and Man(alpha1-6)Man(alpha1-O)Me in complex with concanavalin A.,Bouckaert J, Hamelryck TW, Wyns L, Loris R J Biol Chem. 1999 Oct 8;274(41):29188-95. PMID:10506175[8]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Barral-Netto M, Santos SB, Barral A, Moreira LI, Santos CF, Moreira RA, Oliveira JT, Cavada BS. Human lymphocyte stimulation by legume lectins from the Diocleae tribe. Immunol Invest. 1992 Jul;21(4):297-303. PMID:1398779
  2. Gomes JC, Ferreira RR, Cavada BS, Moreira RA, Oliveira JT. Histamine release induced by glucose (mannose)-specific lectins isolated from Brazilian beans. Comparison with concanavalin A. Agents Actions. 1994 May;41(3-4):132-5. PMID:7524287
  3. Ferreira RR, Cavada BS, Moreira RA, Oliveira JT, Gomes JC. Characteristics of the histamine release from hamster cheek pouch mast cells stimulated by lectins from Brazilian beans and concanavalin A. Inflamm Res. 1996 Sep;45(9):442-7. PMID:8891754
  4. Assreuy AM, Shibuya MD, Martins GJ, De Souza ML, Cavada BS, Moreira RA, Oliveira JT, Ribeiro RA, Flores CA. Anti-inflammatory effect of glucose-mannose binding lectins isolated from Brazilian beans. Mediators Inflamm. 1997;6(3):201-10. PMID:18472821 doi:http://dx.doi.org/10.1080/09629359791695
  5. Dam TK, Cavada BS, Grangeiro TB, Santos CF, de Sousa FA, Oscarson S, Brewer CF. Diocleinae lectins are a group of proteins with conserved binding sites for the core trimannoside of asparagine-linked oligosaccharides and differential specificities for complex carbohydrates. J Biol Chem. 1998 May 15;273(20):12082-8. PMID:9575151
  6. Dam TK, Cavada BS, Grangeiro TB, Santos CF, Ceccatto VM, de Sousa FA, Oscarson S, Brewer CF. Thermodynamic binding studies of lectins from the diocleinae subtribe to deoxy analogs of the core trimannoside of asparagine-linked oligosaccharides. J Biol Chem. 2000 May 26;275(21):16119-26. PMID:10747944 doi:http://dx.doi.org/10.1074/jbc.M000670200
  7. dos Santos AF, Cavada BS, da Rocha BA, do Nascimento KS, Sant'Ana AE. Toxicity of some glucose/mannose-binding lectins to Biomphalaria glabrata and Artemia salina. Bioresour Technol. 2010 Jan;101(2):794-8. doi: 10.1016/j.biortech.2009.07.062., Epub 2009 Sep 17. PMID:19765980 doi:http://dx.doi.org/10.1016/j.biortech.2009.07.062
  8. Bouckaert J, Hamelryck TW, Wyns L, Loris R. The crystal structures of Man(alpha1-3)Man(alpha1-O)Me and Man(alpha1-6)Man(alpha1-O)Me in complex with concanavalin A. J Biol Chem. 1999 Oct 8;274(41):29188-95. PMID:10506175

1qdc, resolution 2.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA