1q3v: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(12 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Seed}}
[[Image:1q3v.png|left|200px]]


<!--
==Crystal structure of a wild-type Cre recombinase-loxP synapse: phosphotyrosine covalent intermediate==
The line below this paragraph, containing "STRUCTURE_1q3v", creates the "Structure Box" on the page.
<StructureSection load='1q3v' size='340' side='right'caption='[[1q3v]], [[Resolution|resolution]] 2.91&Aring;' scene=''>
You may change the PDB parameter (which sets the PDB file loaded into the applet)
== Structural highlights ==
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
<table><tr><td colspan='2'>[[1q3v]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_virus_P1 Escherichia virus P1]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1Q3V OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1Q3V FirstGlance]. <br>
or leave the SCENE parameter empty for the default display.
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.91&#8491;</td></tr>
-->
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=A3P:ADENOSINE-3-5-DIPHOSPHATE'>A3P</scene>, <scene name='pdbligand=IOD:IODIDE+ION'>IOD</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=UMP:2-DEOXYURIDINE+5-MONOPHOSPHATE'>UMP</scene></td></tr>
{{STRUCTURE_1q3v|  PDB=1q3v  |  SCENE=  }}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1q3v FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1q3v OCA], [https://pdbe.org/1q3v PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1q3v RCSB], [https://www.ebi.ac.uk/pdbsum/1q3v PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1q3v ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/RECR_BPP1 RECR_BPP1] Catalyzes site-specific recombination between two 34-base-pair LOXP sites. Its role is to maintain the phage genome as a monomeric unit-copy plasmid in the lysogenic state.
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/q3/1q3v_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1q3v ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Escherichia coli phage P1 Cre recombinase catalyzes the site-specific recombination of DNA containing loxP sites. We report here two crystal structures of a wild-type Cre recombinase-loxP synaptic complex corresponding to two distinct reaction states: an initial pre-cleavage complex, trapped using a phosphorothioate modification at the cleavable scissile bond that prevents the recombination reaction, and a 3'-phosphotyrosine protein-DNA intermediate resulting from the first strand cleavage. In contrast to previously determined Cre complexes, both structures contain a full tetrameric complex in the asymmetric unit, unequivocally showing that the anti-parallel arrangement of the loxP sites is an intrinsic property of the Cre-loxP recombination synapse. The conformation of the spacer is different to the one observed for the symmetrized loxS site: a kink next to the scissile phosphate in the top strand of the pre-cleavage complex leads to unstacking of the TpG step and a widening of the minor groove. This side of the spacer is interacting with a 'cleavage-competent' Cre subunit, suggesting that the first cleavage occurs at the ApT step in the top strand. This is further confirmed by the structure of the 3'-phosphotyrosine intermediate, where the DNA is cleaved in the top strands and covalently linked to the 'cleavage-competent' subunits. The cleavage is followed by a movement of the C-terminal part containing the attacking Y324 and the helix N interacting with the 'non-cleaving' subunit. This rearrangement could be responsible for the interconversion of Cre subunits. Our results also suggest that the Cre-induced kink next to the scissile phosphodiester activates the DNA for cleavage at this position and facilitates strand transfer.


===Crystal structure of a wild-type Cre recombinase-loxP synapse: phosphotyrosine covalent intermediate===
Crystal structure of a wild-type Cre recombinase-loxP synapse reveals a novel spacer conformation suggesting an alternative mechanism for DNA cleavage activation.,Ennifar E, Meyer JE, Buchholz F, Stewart AF, Suck D Nucleic Acids Res. 2003 Sep 15;31(18):5449-60. PMID:12954782<ref>PMID:12954782</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1q3v" style="background-color:#fffaf0;"></div>


<!--
==See Also==
The line below this paragraph, {{ABSTRACT_PUBMED_12954782}}, adds the Publication Abstract to the page
*[[Resolvase 3D structures|Resolvase 3D structures]]
(as it appears on PubMed at http://www.pubmed.gov), where 12954782 is the PubMed ID number.
== References ==
-->
<references/>
{{ABSTRACT_PUBMED_12954782}}
__TOC__
 
</StructureSection>
==About this Structure==
[[Category: Escherichia virus P1]]
1Q3V is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Enterobacteria_phage_p1 Enterobacteria phage p1]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1Q3V OCA].
[[Category: Large Structures]]
 
[[Category: Buchholz F]]
==Reference==
[[Category: Ennifar E]]
Crystal structure of a wild-type Cre recombinase-loxP synapse reveals a novel spacer conformation suggesting an alternative mechanism for DNA cleavage activation., Ennifar E, Meyer JE, Buchholz F, Stewart AF, Suck D, Nucleic Acids Res. 2003 Sep 15;31(18):5449-60. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/12954782 12954782]
[[Category: Meyer JEW]]
[[Category: Enterobacteria phage p1]]
[[Category: Stewart AF]]
[[Category: Single protein]]
[[Category: Suck D]]
[[Category: Buchholz, F.]]
[[Category: Ennifar, E.]]
[[Category: Meyer, J E.W.]]
[[Category: Stewart, A F.]]
[[Category: Suck, D.]]
[[Category: Cre]]
[[Category: Dna]]
[[Category: Recombinase]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun Jul 27 20:24:41 2008''

Latest revision as of 12:56, 16 August 2023

Crystal structure of a wild-type Cre recombinase-loxP synapse: phosphotyrosine covalent intermediateCrystal structure of a wild-type Cre recombinase-loxP synapse: phosphotyrosine covalent intermediate

Structural highlights

1q3v is a 10 chain structure with sequence from Escherichia virus P1. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.91Å
Ligands:, , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

RECR_BPP1 Catalyzes site-specific recombination between two 34-base-pair LOXP sites. Its role is to maintain the phage genome as a monomeric unit-copy plasmid in the lysogenic state.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Escherichia coli phage P1 Cre recombinase catalyzes the site-specific recombination of DNA containing loxP sites. We report here two crystal structures of a wild-type Cre recombinase-loxP synaptic complex corresponding to two distinct reaction states: an initial pre-cleavage complex, trapped using a phosphorothioate modification at the cleavable scissile bond that prevents the recombination reaction, and a 3'-phosphotyrosine protein-DNA intermediate resulting from the first strand cleavage. In contrast to previously determined Cre complexes, both structures contain a full tetrameric complex in the asymmetric unit, unequivocally showing that the anti-parallel arrangement of the loxP sites is an intrinsic property of the Cre-loxP recombination synapse. The conformation of the spacer is different to the one observed for the symmetrized loxS site: a kink next to the scissile phosphate in the top strand of the pre-cleavage complex leads to unstacking of the TpG step and a widening of the minor groove. This side of the spacer is interacting with a 'cleavage-competent' Cre subunit, suggesting that the first cleavage occurs at the ApT step in the top strand. This is further confirmed by the structure of the 3'-phosphotyrosine intermediate, where the DNA is cleaved in the top strands and covalently linked to the 'cleavage-competent' subunits. The cleavage is followed by a movement of the C-terminal part containing the attacking Y324 and the helix N interacting with the 'non-cleaving' subunit. This rearrangement could be responsible for the interconversion of Cre subunits. Our results also suggest that the Cre-induced kink next to the scissile phosphodiester activates the DNA for cleavage at this position and facilitates strand transfer.

Crystal structure of a wild-type Cre recombinase-loxP synapse reveals a novel spacer conformation suggesting an alternative mechanism for DNA cleavage activation.,Ennifar E, Meyer JE, Buchholz F, Stewart AF, Suck D Nucleic Acids Res. 2003 Sep 15;31(18):5449-60. PMID:12954782[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Ennifar E, Meyer JE, Buchholz F, Stewart AF, Suck D. Crystal structure of a wild-type Cre recombinase-loxP synapse reveals a novel spacer conformation suggesting an alternative mechanism for DNA cleavage activation. Nucleic Acids Res. 2003 Sep 15;31(18):5449-60. PMID:12954782

1q3v, resolution 2.91Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA