1q36: Difference between revisions
No edit summary |
No edit summary |
||
(10 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==EPSP synthase (Asp313Ala) liganded with tetrahedral reaction intermediate== | |||
<StructureSection load='1q36' size='340' side='right'caption='[[1q36]], [[Resolution|resolution]] 1.60Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1q36]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1Q36 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1Q36 FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.6Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FMT:FORMIC+ACID'>FMT</scene>, <scene name='pdbligand=SKP:5-(1-CARBOXY-1-PHOSPHONOOXY-ETHOXYL)-4-HYDROXY-3-PHOSPHONOOXY-CYCLOHEX-1-ENECARBOXYLIC+ACID'>SKP</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1q36 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1q36 OCA], [https://pdbe.org/1q36 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1q36 RCSB], [https://www.ebi.ac.uk/pdbsum/1q36 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1q36 ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/AROA_ECOLI AROA_ECOLI] | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/q3/1q36_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1q36 ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) and 5-enolpyruvylshikimate-3-phosphate synthase (AroA) constitute the small enzyme family of enolpyruvyl transferases, which catalyze the chemically unusual reaction of enolpyruvyl transfer. MurA catalyzes the first step in the biosynthesis of the bacterial cell wall; AroA is the sixth enzyme of the shikimate pathway leading to the synthesis of aromatic compounds in numerous microorganisms and plants. Because both metabolic pathways are absent from mammals but essential for the growth of microorganisms, MurA and AroA are attractive targets for the development of novel antimicrobial drugs. We have determined the x-ray structures of the D305A mutant of Enterobacter cloacae MurA and the D313A mutant of Escherichia coli AroA, both of which crystallized in the presence of their substrates. The structures depict the tetrahedral reaction intermediate states of the enzymes and prove that, without the aspartate side chain, the overall addition-elimination reaction in both enzymes is halted after the addition step. The presented structures lead to a new view of the catalytic mechanism and, moreover, provide an ideal starting point for the rational design of potent inhibitors of MurA and AroA. | |||
A new view of the mechanisms of UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) and 5-enolpyruvylshikimate-3-phosphate synthase (AroA) derived from X-ray structures of their tetrahedral reaction intermediate states.,Eschenburg S, Kabsch W, Healy ML, Schonbrunn E J Biol Chem. 2003 Dec 5;278(49):49215-22. Epub 2003 Sep 16. PMID:13129913<ref>PMID:13129913</ref> | |||
UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) and 5-enolpyruvylshikimate-3-phosphate synthase (AroA) | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 1q36" style="background-color:#fffaf0;"></div> | |||
== | ==See Also== | ||
*[[EPSP synthase 3D structures|EPSP synthase 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Escherichia coli]] | [[Category: Escherichia coli]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: Eschenburg | [[Category: Eschenburg S]] | ||
[[Category: Healy | [[Category: Healy ML]] | ||
[[Category: Kabsch | [[Category: Kabsch W]] | ||
[[Category: Schonbrunn | [[Category: Schonbrunn E]] | ||
Latest revision as of 12:56, 16 August 2023
EPSP synthase (Asp313Ala) liganded with tetrahedral reaction intermediateEPSP synthase (Asp313Ala) liganded with tetrahedral reaction intermediate
Structural highlights
FunctionEvolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedUDP-N-acetylglucosamine enolpyruvyl transferase (MurA) and 5-enolpyruvylshikimate-3-phosphate synthase (AroA) constitute the small enzyme family of enolpyruvyl transferases, which catalyze the chemically unusual reaction of enolpyruvyl transfer. MurA catalyzes the first step in the biosynthesis of the bacterial cell wall; AroA is the sixth enzyme of the shikimate pathway leading to the synthesis of aromatic compounds in numerous microorganisms and plants. Because both metabolic pathways are absent from mammals but essential for the growth of microorganisms, MurA and AroA are attractive targets for the development of novel antimicrobial drugs. We have determined the x-ray structures of the D305A mutant of Enterobacter cloacae MurA and the D313A mutant of Escherichia coli AroA, both of which crystallized in the presence of their substrates. The structures depict the tetrahedral reaction intermediate states of the enzymes and prove that, without the aspartate side chain, the overall addition-elimination reaction in both enzymes is halted after the addition step. The presented structures lead to a new view of the catalytic mechanism and, moreover, provide an ideal starting point for the rational design of potent inhibitors of MurA and AroA. A new view of the mechanisms of UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) and 5-enolpyruvylshikimate-3-phosphate synthase (AroA) derived from X-ray structures of their tetrahedral reaction intermediate states.,Eschenburg S, Kabsch W, Healy ML, Schonbrunn E J Biol Chem. 2003 Dec 5;278(49):49215-22. Epub 2003 Sep 16. PMID:13129913[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|