1p8q: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(13 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:1p8q.gif|left|200px]]


{{Structure
==Structural and Functional Importance of First-Shell Metal Ligands in the Binuclear Cluster of Arginase I.==
|PDB= 1p8q |SIZE=350|CAPTION= <scene name='initialview01'>1p8q</scene>, resolution 2.95&Aring;
<StructureSection load='1p8q' size='340' side='right'caption='[[1p8q]], [[Resolution|resolution]] 2.95&Aring;' scene=''>
|SITE=  
== Structural highlights ==
|LIGAND= <scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene> and <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>
<table><tr><td colspan='2'>[[1p8q]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Rattus_norvegicus Rattus norvegicus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1P8Q OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1P8Q FirstGlance]. <br>
|ACTIVITY= [http://en.wikipedia.org/wiki/Arginase Arginase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.5.3.1 3.5.3.1]  
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.95&#8491;</td></tr>
|GENE= ARG1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10116 Rattus norvegicus])
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene></td></tr>
}}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1p8q FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1p8q OCA], [https://pdbe.org/1p8q PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1p8q RCSB], [https://www.ebi.ac.uk/pdbsum/1p8q PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1p8q ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/ARGI1_RAT ARGI1_RAT]  
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/p8/1p8q_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1p8q ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Arginase is a binuclear manganese metalloenzyme that hydrolyzes l-arginine to form l-ornithine and urea. The three-dimensional structures of D128E, D128N, D232A, D232C, D234E, H101N, and H101E arginases I have been determined by X-ray crystallographic methods to elucidate the roles of the first-shell metal ligands in the stability and catalytic activity of the enzyme. This work represents the first structure-based dissection of the binuclear manganese cluster using site-directed mutagenesis and X-ray crystallography. Substitution of the metal ligands compromises the catalytic activity of the enzyme, either by the loss or disruption of the metal cluster or the nucleophilic metal-bridging hydroxide ion. However, the substitution of the metal ligands or the reduction of Mn(2+)(A) or Mn(2+)(B) occupancy does not compromise enzyme-substrate affinity as reflected by K(M), which remains relatively invariant across this series of arginase variants. This implicates a nonmetal binding site for substrate l-arginine in the precatalytic Michaelis complex, as proposed based on analysis of the native enzyme structure (Kanyo, Z. F., Scolnick, L. R., Ash, D. E., and Christianson, D. W. (1996) Nature 383, 554-557).


'''Structural and Functional Importance of First-Shell Metal Ligands in the Binuclear Cluster of Arginase I.'''
Structural and functional importance of first-shell metal ligands in the binuclear manganese cluster of arginase I.,Cama E, Emig FA, Ash DE, Christianson DW Biochemistry. 2003 Jul 1;42(25):7748-58. PMID:12820884<ref>PMID:12820884</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1p8q" style="background-color:#fffaf0;"></div>


==Overview==
==See Also==
Arginase is a binuclear manganese metalloenzyme that hydrolyzes l-arginine to form l-ornithine and urea. The three-dimensional structures of D128E, D128N, D232A, D232C, D234E, H101N, and H101E arginases I have been determined by X-ray crystallographic methods to elucidate the roles of the first-shell metal ligands in the stability and catalytic activity of the enzyme. This work represents the first structure-based dissection of the binuclear manganese cluster using site-directed mutagenesis and X-ray crystallography. Substitution of the metal ligands compromises the catalytic activity of the enzyme, either by the loss or disruption of the metal cluster or the nucleophilic metal-bridging hydroxide ion. However, the substitution of the metal ligands or the reduction of Mn(2+)(A) or Mn(2+)(B) occupancy does not compromise enzyme-substrate affinity as reflected by K(M), which remains relatively invariant across this series of arginase variants. This implicates a nonmetal binding site for substrate l-arginine in the precatalytic Michaelis complex, as proposed based on analysis of the native enzyme structure (Kanyo, Z. F., Scolnick, L. R., Ash, D. E., and Christianson, D. W. (1996) Nature 383, 554-557).
*[[Arginase 3D structures|Arginase 3D structures]]
 
== References ==
==About this Structure==
<references/>
1P8Q is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Rattus_norvegicus Rattus norvegicus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1P8Q OCA].
__TOC__
 
</StructureSection>
==Reference==
[[Category: Large Structures]]
Structural and functional importance of first-shell metal ligands in the binuclear manganese cluster of arginase I., Cama E, Emig FA, Ash DE, Christianson DW, Biochemistry. 2003 Jul 1;42(25):7748-58. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/12820884 12820884]
[[Category: Arginase]]
[[Category: Rattus norvegicus]]
[[Category: Rattus norvegicus]]
[[Category: Single protein]]
[[Category: Ash DE]]
[[Category: Ash, D E.]]
[[Category: Cama E]]
[[Category: Cama, E.]]
[[Category: Christianson DW]]
[[Category: Christianson, D W.]]
[[Category: Emig FA]]
[[Category: Emig, F A.]]
[[Category: GOL]]
[[Category: MN]]
[[Category: arginine metabolism]]
[[Category: binuclear manganese cluster]]
[[Category: hydrolase]]
[[Category: urea cycle]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Mar 20 13:21:22 2008''

Latest revision as of 12:40, 16 August 2023

Structural and Functional Importance of First-Shell Metal Ligands in the Binuclear Cluster of Arginase I.Structural and Functional Importance of First-Shell Metal Ligands in the Binuclear Cluster of Arginase I.

Structural highlights

1p8q is a 3 chain structure with sequence from Rattus norvegicus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.95Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

ARGI1_RAT

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Arginase is a binuclear manganese metalloenzyme that hydrolyzes l-arginine to form l-ornithine and urea. The three-dimensional structures of D128E, D128N, D232A, D232C, D234E, H101N, and H101E arginases I have been determined by X-ray crystallographic methods to elucidate the roles of the first-shell metal ligands in the stability and catalytic activity of the enzyme. This work represents the first structure-based dissection of the binuclear manganese cluster using site-directed mutagenesis and X-ray crystallography. Substitution of the metal ligands compromises the catalytic activity of the enzyme, either by the loss or disruption of the metal cluster or the nucleophilic metal-bridging hydroxide ion. However, the substitution of the metal ligands or the reduction of Mn(2+)(A) or Mn(2+)(B) occupancy does not compromise enzyme-substrate affinity as reflected by K(M), which remains relatively invariant across this series of arginase variants. This implicates a nonmetal binding site for substrate l-arginine in the precatalytic Michaelis complex, as proposed based on analysis of the native enzyme structure (Kanyo, Z. F., Scolnick, L. R., Ash, D. E., and Christianson, D. W. (1996) Nature 383, 554-557).

Structural and functional importance of first-shell metal ligands in the binuclear manganese cluster of arginase I.,Cama E, Emig FA, Ash DE, Christianson DW Biochemistry. 2003 Jul 1;42(25):7748-58. PMID:12820884[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Cama E, Emig FA, Ash DE, Christianson DW. Structural and functional importance of first-shell metal ligands in the binuclear manganese cluster of arginase I. Biochemistry. 2003 Jul 1;42(25):7748-58. PMID:12820884 doi:http://dx.doi.org/10.1021/bi030074y

1p8q, resolution 2.95Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA