1njs: Difference between revisions
No edit summary |
No edit summary |
||
(9 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==human GAR Tfase in complex with hydrolyzed form of 10-trifluoroacetyl-5,10-dideaza-acyclic-5,6,7,8-tetrahydrofolic acid== | |||
<StructureSection load='1njs' size='340' side='right'caption='[[1njs]], [[Resolution|resolution]] 1.98Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1njs]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1NJS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1NJS FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.98Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=KEU:N-{4-[(1R)-4-[(2R,4R,5S)-2,4-DIAMINO-6-OXOHEXAHYDROPYRIMIDIN-5-YL]-1-(2,2,2-TRIFLUORO-1,1-DIHYDROXYETHYL)BUTYL]BENZOYL}-D-GLUTAMIC+ACID'>KEU</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1njs FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1njs OCA], [https://pdbe.org/1njs PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1njs RCSB], [https://www.ebi.ac.uk/pdbsum/1njs PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1njs ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/PUR2_HUMAN PUR2_HUMAN] | |||
== Evolutionary Conservation == | |||
== | [[Image:Consurf_key_small.gif|200px|right]] | ||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/nj/1njs_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1njs ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Glycinamide ribonucleotide transformylase (GAR Tfase) has been the target of anti-neoplastic intervention for almost two decades. Here, we use a structure-based approach to design a novel folate analogue, 10-(trifluoroacetyl)-5,10-dideazaacyclic-5,6,7,8-tetrahydrofolic acid (10-CF(3)CO-DDACTHF, 1), which specifically inhibits recombinant human GAR Tfase (K(i) = 15 nM), but is inactive (K(i) > 100 microM) against other folate-dependent enzymes that have been examined. Moreover, compound 1 is a potent inhibitor of tumor cell proliferation (IC(50) = 16 nM, CCRF-CEM), which represents a 10-fold improvement over Lometrexol, a GAR Tfase inhibitor that has been in clinical trials. Thus, this folate analogue 1 is among the most potent and selective inhibitors known toward GAR Tfase. Contributing to its efficacious activity, compound 1 is effectively transported into the cell by the reduced folate carrier and intracellularly sequestered by polyglutamation. The crystal structure of human GAR Tfase with folate analogue 1 at 1.98 A resolution represents the first structure of any GAR Tfase to be determined with a cofactor or cofactor analogue without the presence of substrate. The folate-binding loop of residues 141-146, which is highly flexible in both Escherichia coli and unliganded human GAR Tfase structures, becomes highly ordered upon binding 1 in the folate-binding site. Computational docking of the natural cofactor into this and other apo or complexed structures provides a rational basis for modeling how the natural cofactor 10-formyltetrahydrofolic acid interacts with GAR Tfase, and suggests that this folate analogue-bound conformation represents the best template to date for inhibitor design. | Glycinamide ribonucleotide transformylase (GAR Tfase) has been the target of anti-neoplastic intervention for almost two decades. Here, we use a structure-based approach to design a novel folate analogue, 10-(trifluoroacetyl)-5,10-dideazaacyclic-5,6,7,8-tetrahydrofolic acid (10-CF(3)CO-DDACTHF, 1), which specifically inhibits recombinant human GAR Tfase (K(i) = 15 nM), but is inactive (K(i) > 100 microM) against other folate-dependent enzymes that have been examined. Moreover, compound 1 is a potent inhibitor of tumor cell proliferation (IC(50) = 16 nM, CCRF-CEM), which represents a 10-fold improvement over Lometrexol, a GAR Tfase inhibitor that has been in clinical trials. Thus, this folate analogue 1 is among the most potent and selective inhibitors known toward GAR Tfase. Contributing to its efficacious activity, compound 1 is effectively transported into the cell by the reduced folate carrier and intracellularly sequestered by polyglutamation. The crystal structure of human GAR Tfase with folate analogue 1 at 1.98 A resolution represents the first structure of any GAR Tfase to be determined with a cofactor or cofactor analogue without the presence of substrate. The folate-binding loop of residues 141-146, which is highly flexible in both Escherichia coli and unliganded human GAR Tfase structures, becomes highly ordered upon binding 1 in the folate-binding site. Computational docking of the natural cofactor into this and other apo or complexed structures provides a rational basis for modeling how the natural cofactor 10-formyltetrahydrofolic acid interacts with GAR Tfase, and suggests that this folate analogue-bound conformation represents the best template to date for inhibitor design. | ||
Rational design, synthesis, evaluation, and crystal structure of a potent inhibitor of human GAR Tfase: 10-(trifluoroacetyl)-5,10-dideazaacyclic-5,6,7,8-tetrahydrofolic acid.,Zhang Y, Desharnais J, Marsilje TH, Li C, Hedrick MP, Gooljarsingh LT, Tavassoli A, Benkovic SJ, Olson AJ, Boger DL, Wilson IA Biochemistry. 2003 May 27;42(20):6043-56. PMID:12755606<ref>PMID:12755606</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 1njs" style="background-color:#fffaf0;"></div> | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: Benkovic SJ]] | |||
[[Category: Benkovic | [[Category: Boger DL]] | ||
[[Category: Boger | [[Category: Desharnais J]] | ||
[[Category: Desharnais | [[Category: Gooljarsingh LT]] | ||
[[Category: Gooljarsingh | [[Category: Hedrick MP]] | ||
[[Category: Hedrick | [[Category: Li C]] | ||
[[Category: Li | [[Category: Marsilje TH]] | ||
[[Category: Marsilje | [[Category: Olson AJ]] | ||
[[Category: Olson | [[Category: Tavassoli A]] | ||
[[Category: Tavassoli | [[Category: Wilson IA]] | ||
[[Category: Wilson | [[Category: Zhang Y]] | ||
[[Category: Zhang | |||