1jl2: Difference between revisions

No edit summary
No edit summary
 
(16 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:1jl2.gif|left|200px]]


{{Structure
==Crystal structure of TCEO RNase H-a chimera combining the folding core from T. thermophilus RNase H and the remaining region of E. coli RNase H==
|PDB= 1jl2 |SIZE=350|CAPTION= <scene name='initialview01'>1jl2</scene>, resolution 1.76&Aring;
<StructureSection load='1jl2' size='340' side='right'caption='[[1jl2]], [[Resolution|resolution]] 1.76&Aring;' scene=''>
|SITE=  
== Structural highlights ==
|LIGAND=  
<table><tr><td colspan='2'>[[1jl2]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli_K-12 Escherichia coli K-12] and [https://en.wikipedia.org/wiki/Thermus_thermophilus_HB8 Thermus thermophilus HB8]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1JL2 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1JL2 FirstGlance]. <br>
|ACTIVITY= [http://en.wikipedia.org/wiki/Ribonuclease_H Ribonuclease H], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.1.26.4 3.1.26.4]  
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.76&#8491;</td></tr>
|GENE= RNase H ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id= Escherichia coli and Thermus thermophilus])
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1jl2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1jl2 OCA], [https://pdbe.org/1jl2 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1jl2 RCSB], [https://www.ebi.ac.uk/pdbsum/1jl2 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1jl2 ProSAT]</span></td></tr>
}}
</table>
 
== Function ==
'''Crystal structure of TCEO RNase H-a chimera combining the folding core from T. thermophilus RNase H and the remaining region of E. coli RNase H'''
[https://www.uniprot.org/uniprot/RNH_ECOLI RNH_ECOLI] Endonuclease that specifically degrades the RNA of RNA-DNA hybrids. RNase H participates in DNA replication; it helps to specify the origin of genomic replication by suppressing initiation at origins other than the oriC locus; along with the 5'-3' exonuclease of pol1, it removes RNA primers from the Okazaki fragments of lagging strand synthesis; and it defines the origin of replication for ColE1-type plasmids by specific cleavage of an RNA preprimer.[HAMAP-Rule:MF_00042][https://www.uniprot.org/uniprot/RNH_THET8 RNH_THET8] Endonuclease that specifically degrades the RNA of RNA-DNA hybrids.
 
== Evolutionary Conservation ==
 
[[Image:Consurf_key_small.gif|200px|right]]
==Overview==
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/jl/1jl2_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1jl2 ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
To investigate the contribution of the folding cores to the thermodynamic stability of RNases H, we used rational design to create two chimeras composed of parts of a thermophilic and a mesophilic RNase H. Each chimera combines the folding core from one parent protein and the remaining parts of the other. Both chimeras form active, well-folded RNases H. Stability curves, based on CD-monitored chemical denaturations, show that the chimera with the thermophilic core is more stable, has a higher midpoint of thermal denaturation, and a lower change in heat capacity (DeltaCp) upon unfolding than the chimera with the mesophilic core. A possible explanation for the low DeltaCp of both the parent thermophilic RNase H and the chimera with the thermophilic core is the residual structure in the denatured state. On the basis of the studied parameters, the chimera with the thermophilic core resembles a true thermophilic protein. Our results suggest that the folding core plays an essential role in conferring thermodynamic parameters to RNases H.
To investigate the contribution of the folding cores to the thermodynamic stability of RNases H, we used rational design to create two chimeras composed of parts of a thermophilic and a mesophilic RNase H. Each chimera combines the folding core from one parent protein and the remaining parts of the other. Both chimeras form active, well-folded RNases H. Stability curves, based on CD-monitored chemical denaturations, show that the chimera with the thermophilic core is more stable, has a higher midpoint of thermal denaturation, and a lower change in heat capacity (DeltaCp) upon unfolding than the chimera with the mesophilic core. A possible explanation for the low DeltaCp of both the parent thermophilic RNase H and the chimera with the thermophilic core is the residual structure in the denatured state. On the basis of the studied parameters, the chimera with the thermophilic core resembles a true thermophilic protein. Our results suggest that the folding core plays an essential role in conferring thermodynamic parameters to RNases H.


==About this Structure==
Contributions of folding cores to the thermostabilities of two ribonucleases H.,Robic S, Berger JM, Marqusee S Protein Sci. 2002 Feb;11(2):381-9. PMID:11790848<ref>PMID:11790848</ref>
1JL2 is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Escherichia_coli_and_thermus_thermophilus Escherichia coli and thermus thermophilus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1JL2 OCA].


==Reference==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
Contributions of folding cores to the thermostabilities of two ribonucleases H., Robic S, Berger JM, Marqusee S, Protein Sci. 2002 Feb;11(2):381-9. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/11790848 11790848]
</div>
[[Category: Escherichia coli and thermus thermophilus]]
<div class="pdbe-citations 1jl2" style="background-color:#fffaf0;"></div>
[[Category: Ribonuclease H]]
[[Category: Single protein]]
[[Category: Berger, J M.]]
[[Category: Marqusee, S.]]
[[Category: Robic, S.]]
[[Category: mixed alpha-beta protein]]


''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Mar 20 12:04:51 2008''
==See Also==
*[[Ribonuclease 3D structures|Ribonuclease 3D structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Escherichia coli K-12]]
[[Category: Large Structures]]
[[Category: Thermus thermophilus HB8]]
[[Category: Berger JM]]
[[Category: Marqusee S]]
[[Category: Robic S]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA