1jb7: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(13 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:1jb7.gif|left|200px]]


{{Structure
==DNA G-Quartets in a 1.86 A Resolution Structure of an Oxytricha nova Telomeric Protein-DNA Complex==
|PDB= 1jb7 |SIZE=350|CAPTION= <scene name='initialview01'>1jb7</scene>, resolution 1.86&Aring;
<StructureSection load='1jb7' size='340' side='right'caption='[[1jb7]], [[Resolution|resolution]] 1.86&Aring;' scene=''>
|SITE=  
== Structural highlights ==
|LIGAND= <scene name='pdbligand=NA:SODIUM+ION'>NA</scene> and <scene name='pdbligand=CL:CHLORIDE ION'>CL</scene>
<table><tr><td colspan='2'>[[1jb7]] is a 5 chain structure with sequence from [https://en.wikipedia.org/wiki/Sterkiella_nova Sterkiella nova]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1JB7 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1JB7 FirstGlance]. <br>
|ACTIVITY=  
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.86&#8491;</td></tr>
|GENE= MAC-56A ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=200597 Sterkiella nova]), MAC-41A ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=200597 Sterkiella nova])
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene></td></tr>
}}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1jb7 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1jb7 OCA], [https://pdbe.org/1jb7 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1jb7 RCSB], [https://www.ebi.ac.uk/pdbsum/1jb7 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1jb7 ProSAT]</span></td></tr>
 
</table>
'''DNA G-Quartets in a 1.86 A Resolution Structure of an Oxytricha nova Telomeric Protein-DNA Complex'''
== Function ==
 
[https://www.uniprot.org/uniprot/TEBA_STENO TEBA_STENO] May function as protective capping of the single-stranded telomeric overhang. May also participate in telomere length regulation during DNA replication. Binds specifically to the T4G4-containing extension on the 3'strand and protects this region of the telomere from nuclease digestion and chemical modification.
 
== Evolutionary Conservation ==
==Overview==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/jb/1jb7_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1jb7 ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The Oxytricha nova telomere end binding protein (OnTEBP) recognizes, binds and protects the single-stranded 3'-terminal DNA extension found at the ends of macronuclear chromosomes. The structure of this complex shows that the single strand GGGGTTTTGGGG DNA binds in a deep cleft between the two protein subunits of OnTEBP, adopting a non-helical and irregular conformation. In extending the resolution limit of this structure to 1.86 A, we were surprised to find a G-quartet linked dimer of the GGGGTTTTGGGG DNA also packing within the crystal lattice and interacting with the telomere end binding protein. The G-quartet DNA exhibits the same structure and topology as previously observed in solution by NMR with diagonally crossing d(TTTT) loops at either end of the four-stranded helix. Additionally, the crystal structure reveals clearly visible Na(+), and specific patterns of bound water molecules in the four non-equivalent grooves. Although the G-quartet:protein contact surfaces are modest and might simply represent crystal packing interactions, it is interesting to speculate that the two types of telomeric DNA-protein interactions observed here might both be important in telomere biology.
The Oxytricha nova telomere end binding protein (OnTEBP) recognizes, binds and protects the single-stranded 3'-terminal DNA extension found at the ends of macronuclear chromosomes. The structure of this complex shows that the single strand GGGGTTTTGGGG DNA binds in a deep cleft between the two protein subunits of OnTEBP, adopting a non-helical and irregular conformation. In extending the resolution limit of this structure to 1.86 A, we were surprised to find a G-quartet linked dimer of the GGGGTTTTGGGG DNA also packing within the crystal lattice and interacting with the telomere end binding protein. The G-quartet DNA exhibits the same structure and topology as previously observed in solution by NMR with diagonally crossing d(TTTT) loops at either end of the four-stranded helix. Additionally, the crystal structure reveals clearly visible Na(+), and specific patterns of bound water molecules in the four non-equivalent grooves. Although the G-quartet:protein contact surfaces are modest and might simply represent crystal packing interactions, it is interesting to speculate that the two types of telomeric DNA-protein interactions observed here might both be important in telomere biology.


==About this Structure==
DNA G-quartets in a 1.86 A resolution structure of an Oxytricha nova telomeric protein-DNA complex.,Horvath MP, Schultz SC J Mol Biol. 2001 Jul 6;310(2):367-77. PMID:11428895<ref>PMID:11428895</ref>
1JB7 is a [[Protein complex]] structure of sequences from [http://en.wikipedia.org/wiki/Sterkiella_nova Sterkiella nova]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1JB7 OCA].


==Reference==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
DNA G-quartets in a 1.86 A resolution structure of an Oxytricha nova telomeric protein-DNA complex., Horvath MP, Schultz SC, J Mol Biol. 2001 Jul 6;310(2):367-77. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/11428895 11428895]
</div>
[[Category: Protein complex]]
<div class="pdbe-citations 1jb7" style="background-color:#fffaf0;"></div>
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Large Structures]]
[[Category: Sterkiella nova]]
[[Category: Sterkiella nova]]
[[Category: Horvath, M P.]]
[[Category: Horvath MP]]
[[Category: Schultz, S C.]]
[[Category: Schultz SC]]
[[Category: CL]]
[[Category: NA]]
[[Category: dna hydration]]
[[Category: dna-protein interaction]]
[[Category: quadruplex dna]]
[[Category: sodium ion]]
[[Category: telomere-binding protein]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Mar 20 12:01:05 2008''

Latest revision as of 11:37, 16 August 2023

DNA G-Quartets in a 1.86 A Resolution Structure of an Oxytricha nova Telomeric Protein-DNA ComplexDNA G-Quartets in a 1.86 A Resolution Structure of an Oxytricha nova Telomeric Protein-DNA Complex

Structural highlights

1jb7 is a 5 chain structure with sequence from Sterkiella nova. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.86Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

TEBA_STENO May function as protective capping of the single-stranded telomeric overhang. May also participate in telomere length regulation during DNA replication. Binds specifically to the T4G4-containing extension on the 3'strand and protects this region of the telomere from nuclease digestion and chemical modification.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The Oxytricha nova telomere end binding protein (OnTEBP) recognizes, binds and protects the single-stranded 3'-terminal DNA extension found at the ends of macronuclear chromosomes. The structure of this complex shows that the single strand GGGGTTTTGGGG DNA binds in a deep cleft between the two protein subunits of OnTEBP, adopting a non-helical and irregular conformation. In extending the resolution limit of this structure to 1.86 A, we were surprised to find a G-quartet linked dimer of the GGGGTTTTGGGG DNA also packing within the crystal lattice and interacting with the telomere end binding protein. The G-quartet DNA exhibits the same structure and topology as previously observed in solution by NMR with diagonally crossing d(TTTT) loops at either end of the four-stranded helix. Additionally, the crystal structure reveals clearly visible Na(+), and specific patterns of bound water molecules in the four non-equivalent grooves. Although the G-quartet:protein contact surfaces are modest and might simply represent crystal packing interactions, it is interesting to speculate that the two types of telomeric DNA-protein interactions observed here might both be important in telomere biology.

DNA G-quartets in a 1.86 A resolution structure of an Oxytricha nova telomeric protein-DNA complex.,Horvath MP, Schultz SC J Mol Biol. 2001 Jul 6;310(2):367-77. PMID:11428895[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Horvath MP, Schultz SC. DNA G-quartets in a 1.86 A resolution structure of an Oxytricha nova telomeric protein-DNA complex. J Mol Biol. 2001 Jul 6;310(2):367-77. PMID:11428895 doi:10.1006/jmbi.2001.4766

1jb7, resolution 1.86Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA