1xv5: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(13 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:1xv5.gif|left|200px]]<br /><applet load="1xv5" size="350" color="white" frame="true" align="right" spinBox="true"
caption="1xv5, resolution 1.73&Aring;" />
'''alpha-glucosyltransferase (AGT) in complex with UDP'''<br />


==Overview==
==alpha-glucosyltransferase (AGT) in complex with UDP==
<StructureSection load='1xv5' size='340' side='right'caption='[[1xv5]], [[Resolution|resolution]] 1.73&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[1xv5]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_virus_T4 Escherichia virus T4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1XV5 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1XV5 FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.73&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=CME:S,S-(2-HYDROXYETHYL)THIOCYSTEINE'>CME</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=UDP:URIDINE-5-DIPHOSPHATE'>UDP</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1xv5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1xv5 OCA], [https://pdbe.org/1xv5 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1xv5 RCSB], [https://www.ebi.ac.uk/pdbsum/1xv5 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1xv5 ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/GSTA_BPT4 GSTA_BPT4] Is involved in a DNA modification process to protect the phage genome against its own nucleases and the host restriction endonuclease system.
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The Escherichia coli T4 bacteriophage uses two glycosyltransferases to glucosylate and thus protect its DNA: the retaining alpha-glucosyltransferase (AGT) and the inverting beta-glucosyltransferase (BGT). They glucosylate 5-hydroxymethyl cytosine (5-HMC) bases of duplex DNA using UDP-glucose as the sugar donor to form an alpha-glucosidic linkage and a beta-glucosidic linkage, respectively. Five structures of AGT have been determined: a binary complex with the UDP product and four ternary complexes with UDP or UDP-glucose and oligonucleotides containing an A:G, HMU:G (hydroxymethyl uracyl) or AP:G (apurinic/apyrimidinic) mismatch at the target base-pair. AGT adopts the GT-B fold, one of the two folds known for GTs. However, while the sugar donor binding mode is classical for a GT-B enzyme, the sugar acceptor binding mode is unexpected and breaks the established consensus: AGT is the first GT-B enzyme that predominantly binds both the sugar donor and acceptor to the C-terminal domain. Its active site pocket is highly similar to four retaining GT-B glycosyltransferases (trehalose-6-phosphate synthase, glycogen synthase, glycogen and maltodextrin phosphorylases) strongly suggesting a common evolutionary origin and catalytic mechanism for these enzymes. Structure-guided mutagenesis and kinetic analysis do not permit identification of a nucleophile residue responsible for a glycosyl-enzyme intermediate for the classical double displacement mechanism. Interestingly, the DNA structures reveal partially flipped-out bases. They provide evidence for a passive role of AGT in the base-flipping mechanism and for its specific recognition of the acceptor base.
The Escherichia coli T4 bacteriophage uses two glycosyltransferases to glucosylate and thus protect its DNA: the retaining alpha-glucosyltransferase (AGT) and the inverting beta-glucosyltransferase (BGT). They glucosylate 5-hydroxymethyl cytosine (5-HMC) bases of duplex DNA using UDP-glucose as the sugar donor to form an alpha-glucosidic linkage and a beta-glucosidic linkage, respectively. Five structures of AGT have been determined: a binary complex with the UDP product and four ternary complexes with UDP or UDP-glucose and oligonucleotides containing an A:G, HMU:G (hydroxymethyl uracyl) or AP:G (apurinic/apyrimidinic) mismatch at the target base-pair. AGT adopts the GT-B fold, one of the two folds known for GTs. However, while the sugar donor binding mode is classical for a GT-B enzyme, the sugar acceptor binding mode is unexpected and breaks the established consensus: AGT is the first GT-B enzyme that predominantly binds both the sugar donor and acceptor to the C-terminal domain. Its active site pocket is highly similar to four retaining GT-B glycosyltransferases (trehalose-6-phosphate synthase, glycogen synthase, glycogen and maltodextrin phosphorylases) strongly suggesting a common evolutionary origin and catalytic mechanism for these enzymes. Structure-guided mutagenesis and kinetic analysis do not permit identification of a nucleophile residue responsible for a glycosyl-enzyme intermediate for the classical double displacement mechanism. Interestingly, the DNA structures reveal partially flipped-out bases. They provide evidence for a passive role of AGT in the base-flipping mechanism and for its specific recognition of the acceptor base.


==About this Structure==
Structural evidence of a passive base-flipping mechanism for AGT, an unusual GT-B glycosyltransferase.,Lariviere L, Sommer N, Morera S J Mol Biol. 2005 Sep 9;352(1):139-50. PMID:16081100<ref>PMID:16081100</ref>
1XV5 is a [http://en.wikipedia.org/wiki/Single_protein Single protein] structure of sequence from [http://en.wikipedia.org/wiki/Bacteriophage_t4 Bacteriophage t4] with <scene name='pdbligand=CL:'>CL</scene>, <scene name='pdbligand=UDP:'>UDP</scene>, <scene name='pdbligand=EDO:'>EDO</scene> and <scene name='pdbligand=GOL:'>GOL</scene> as [http://en.wikipedia.org/wiki/ligands ligands]. Active as [http://en.wikipedia.org/wiki/DNA_alpha-glucosyltransferase DNA alpha-glucosyltransferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.4.1.26 2.4.1.26] Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1XV5 OCA].


==Reference==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
Structural evidence of a passive base-flipping mechanism for AGT, an unusual GT-B glycosyltransferase., Lariviere L, Sommer N, Morera S, J Mol Biol. 2005 Sep 9;352(1):139-50. PMID:[http://ispc.weizmann.ac.il//pmbin/getpm?pmid=16081100 16081100]
</div>
[[Category: Bacteriophage t4]]
<div class="pdbe-citations 1xv5" style="background-color:#fffaf0;"></div>
[[Category: DNA alpha-glucosyltransferase]]
== References ==
[[Category: Single protein]]
<references/>
[[Category: Lariviere, L.]]
__TOC__
[[Category: Morera, S.]]
</StructureSection>
[[Category: Sommer, N.]]
[[Category: Escherichia virus T4]]
[[Category: CL]]
[[Category: Large Structures]]
[[Category: EDO]]
[[Category: Lariviere L]]
[[Category: GOL]]
[[Category: Morera S]]
[[Category: UDP]]
[[Category: Sommer N]]
[[Category: transferase]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Feb 21 15:58:56 2008''

Latest revision as of 10:12, 9 August 2023

alpha-glucosyltransferase (AGT) in complex with UDPalpha-glucosyltransferase (AGT) in complex with UDP

Structural highlights

1xv5 is a 1 chain structure with sequence from Escherichia virus T4. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.73Å
Ligands:, , , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

GSTA_BPT4 Is involved in a DNA modification process to protect the phage genome against its own nucleases and the host restriction endonuclease system.

Publication Abstract from PubMed

The Escherichia coli T4 bacteriophage uses two glycosyltransferases to glucosylate and thus protect its DNA: the retaining alpha-glucosyltransferase (AGT) and the inverting beta-glucosyltransferase (BGT). They glucosylate 5-hydroxymethyl cytosine (5-HMC) bases of duplex DNA using UDP-glucose as the sugar donor to form an alpha-glucosidic linkage and a beta-glucosidic linkage, respectively. Five structures of AGT have been determined: a binary complex with the UDP product and four ternary complexes with UDP or UDP-glucose and oligonucleotides containing an A:G, HMU:G (hydroxymethyl uracyl) or AP:G (apurinic/apyrimidinic) mismatch at the target base-pair. AGT adopts the GT-B fold, one of the two folds known for GTs. However, while the sugar donor binding mode is classical for a GT-B enzyme, the sugar acceptor binding mode is unexpected and breaks the established consensus: AGT is the first GT-B enzyme that predominantly binds both the sugar donor and acceptor to the C-terminal domain. Its active site pocket is highly similar to four retaining GT-B glycosyltransferases (trehalose-6-phosphate synthase, glycogen synthase, glycogen and maltodextrin phosphorylases) strongly suggesting a common evolutionary origin and catalytic mechanism for these enzymes. Structure-guided mutagenesis and kinetic analysis do not permit identification of a nucleophile residue responsible for a glycosyl-enzyme intermediate for the classical double displacement mechanism. Interestingly, the DNA structures reveal partially flipped-out bases. They provide evidence for a passive role of AGT in the base-flipping mechanism and for its specific recognition of the acceptor base.

Structural evidence of a passive base-flipping mechanism for AGT, an unusual GT-B glycosyltransferase.,Lariviere L, Sommer N, Morera S J Mol Biol. 2005 Sep 9;352(1):139-50. PMID:16081100[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Lariviere L, Sommer N, Morera S. Structural evidence of a passive base-flipping mechanism for AGT, an unusual GT-B glycosyltransferase. J Mol Biol. 2005 Sep 9;352(1):139-50. PMID:16081100 doi:S0022-2836(05)00784-9

1xv5, resolution 1.73Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA