1al5: Difference between revisions
No edit summary |
No edit summary |
||
(12 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== | ==A-TRACT RNA DODECAMER, NMR, 12 STRUCTURES== | ||
<StructureSection load='1al5' size='340' side='right'caption='[[1al5]]' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1al5]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1AL5 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1AL5 FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1al5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1al5 OCA], [https://pdbe.org/1al5 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1al5 RCSB], [https://www.ebi.ac.uk/pdbsum/1al5 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1al5 ProSAT]</span></td></tr> | |||
</table> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The thermodynamic stability of nine dodecamers (four DNA and five RNA) of the same base composition has been compared by UV-melting. TheDeltaG of stabilisation were in the order: r(GACUGAUCAGUC)2>r(CGCAAATTTGCG)2 approximately r(CGCAUAUAUGCG)2>d(CGCAAATTTGCG)2 approximately r(CGCAAAUUUGCG)2>d(CGCATATATGCG)2 approximately d(GACTGATCAGTC)2>r(CGCUUUAAAGCG)2 approximately d(CGCTTTAAAGCG)2. Compared with the mixed sequences, both r(AAAUUU) and r(UUUAAA) are greatly destablising in RNA, whereas in DNA, d(TTTAAA) is destabilising but d(AAATTT) is stabilising, which has been attributed to the formation of a special B'structure involving large propeller twists of the A-T base pairs. The solution structure of the RNA dodecamer r(CGCAAAUUUGCG)2has been determined using NMR and restrained molecular dynamics calculations to assess the conformational reasons for its stability in comparison with d(CGCAAATTTGCG)2. The structures refined to a mean pairwise r.m.s.d. of 0.89+/-0.29 A. The nucleotide conformations are typical of the A family of structures. However, although the helix axis displacement is approximately 4.6 A into the major groove, the rise (3.0 A) and base inclination ( approximately 6 degrees ) are different from standard A form RNA. The extensive base-stacking found in the AAATTT tract of the DNA homologue that is largely responsible for the higher thermodynamic stability of the DNA duplex is reduced in the RNA structure, which may account for its low relative stability. | The thermodynamic stability of nine dodecamers (four DNA and five RNA) of the same base composition has been compared by UV-melting. TheDeltaG of stabilisation were in the order: r(GACUGAUCAGUC)2>r(CGCAAATTTGCG)2 approximately r(CGCAUAUAUGCG)2>d(CGCAAATTTGCG)2 approximately r(CGCAAAUUUGCG)2>d(CGCATATATGCG)2 approximately d(GACTGATCAGTC)2>r(CGCUUUAAAGCG)2 approximately d(CGCTTTAAAGCG)2. Compared with the mixed sequences, both r(AAAUUU) and r(UUUAAA) are greatly destablising in RNA, whereas in DNA, d(TTTAAA) is destabilising but d(AAATTT) is stabilising, which has been attributed to the formation of a special B'structure involving large propeller twists of the A-T base pairs. The solution structure of the RNA dodecamer r(CGCAAAUUUGCG)2has been determined using NMR and restrained molecular dynamics calculations to assess the conformational reasons for its stability in comparison with d(CGCAAATTTGCG)2. The structures refined to a mean pairwise r.m.s.d. of 0.89+/-0.29 A. The nucleotide conformations are typical of the A family of structures. However, although the helix axis displacement is approximately 4.6 A into the major groove, the rise (3.0 A) and base inclination ( approximately 6 degrees ) are different from standard A form RNA. The extensive base-stacking found in the AAATTT tract of the DNA homologue that is largely responsible for the higher thermodynamic stability of the DNA duplex is reduced in the RNA structure, which may account for its low relative stability. | ||
Conformational properties and thermodynamics of the RNA duplex r(CGCAAAUUUGCG)2: comparison with the DNA analogue d(CGCAAATTTGCG)2.,Conte MR, Conn GL, Brown T, Lane AN Nucleic Acids Res. 1997 Jul 1;25(13):2627-34. PMID:9185574<ref>PMID:9185574</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
[[Category: | <div class="pdbe-citations 1al5" style="background-color:#fffaf0;"></div> | ||
[[Category: | == References == | ||
[[Category: | <references/> | ||
[[Category: | __TOC__ | ||
[[Category: | </StructureSection> | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: Synthetic construct]] | |||
[[Category: Brown T]] | |||
[[Category: Conn GL]] | |||
[[Category: Conte MR]] | |||
[[Category: Lane AN]] |