3daa: Difference between revisions
No edit summary |
No edit summary |
||
(16 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== | ==CRYSTALLOGRAPHIC STRUCTURE OF D-AMINO ACID AMINOTRANSFERASE INACTIVATED BY PYRIDOXYL-D-ALANINE== | ||
The three-dimensional structures of two forms of the D-amino acid | <StructureSection load='3daa' size='340' side='right'caption='[[3daa]], [[Resolution|resolution]] 1.90Å' scene=''> | ||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[3daa]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Bacillus_sp._YM-1 Bacillus sp. YM-1]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3DAA OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3DAA FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.9Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=PDD:N-(5-PHOSPHOPYRIDOXYL)-D-ALANINE'>PDD</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3daa FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3daa OCA], [https://pdbe.org/3daa PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3daa RCSB], [https://www.ebi.ac.uk/pdbsum/3daa PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3daa ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/DAAA_BACYM DAAA_BACYM] Acts on the D-isomers of alanine, leucine, aspartate, glutamate, aminobutyrate, norvaline and asparagine. The enzyme transfers an amino group from a substrate D-amino acid to the pyridoxal phosphate cofactor to form pyridoxamine and an alpha-keto acid in the first half-reaction. The second-half reaction is the reverse of the first, transferring the amino group from the pyridoxamine to a second alpha-keto acid to form the product D-amino acid via a ping-pong mechanism. This is an important process in the formation of D-alanine and D-glutamate, which are essential bacterial cell wall components.<ref>PMID:2914916</ref> <ref>PMID:9538014</ref> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/da/3daa_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3daa ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The three-dimensional structures of two forms of the D-amino acid aminotransferase (D-aAT) from Bacillus sp. YM-1 have been determined crystallographically: the pyridoxal phosphate (PLP) form and a complex with the reduced analogue of the external aldimine, N-(5'-phosphopyridoxyl)-d-alanine (PPDA). Together with the previously reported pyridoxamine phosphate form of the enzyme [Sugio et al. (1995) Biochemistry 34, 9661], these structures allow us to describe the pathway of the enzymatic reaction in structural terms. A major determinant of the enzyme's stereospecificity for D-amino acids is a group of three residues (Tyr30, Arg98, and His100, with the latter two contributed by the neighboring subunit) forming four hydrogen bonds to the substrate alpha-carboxyl group. The replacement by hydrophobic groups of the homologous residues of the branched chain L-amino acid aminotransferase (which has a similar fold) could explain its opposite stereospecificity. As in L-aspartate aminotransferase (L-AspAT), the cofactor in D-aAT tilts (around its phosphate group and N1 as pivots) away from the catalytic lysine 145 and the protein face in the course of the reaction. Unlike L-AspAT, D-aAT shows no other significant conformational changes during the reaction. | |||
Crystallographic study of steps along the reaction pathway of D-amino acid aminotransferase.,Peisach D, Chipman DM, Van Ophem PW, Manning JM, Ringe D Biochemistry. 1998 Apr 7;37(14):4958-67. PMID:9538014<ref>PMID:9538014</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 3daa" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Aminotransferase 3D structures|Aminotransferase 3D structures]] | |||
*[[Aspartate aminotransferase 3D structures|Aspartate aminotransferase 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Bacillus sp. YM-1]] | |||
[[Category: Large Structures]] | |||
[[Category: Chipman DM]] | |||
[[Category: Peisach D]] | |||
[[Category: Ringe D]] |