2av8: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(10 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Seed}}
[[Image:2av8.png|left|200px]]


<!--
==Y122F MUTANT OF RIBONUCLEOTIDE REDUCTASE FROM ESCHERICHIA COLI==
The line below this paragraph, containing "STRUCTURE_2av8", creates the "Structure Box" on the page.
<StructureSection load='2av8' size='340' side='right'caption='[[2av8]], [[Resolution|resolution]] 2.46&Aring;' scene=''>
You may change the PDB parameter (which sets the PDB file loaded into the applet)  
== Structural highlights ==
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
<table><tr><td colspan='2'>[[2av8]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2AV8 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2AV8 FirstGlance]. <br>
or leave the SCENE parameter empty for the default display.
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.46&#8491;</td></tr>
-->
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FE2:FE+(II)+ION'>FE2</scene>, <scene name='pdbligand=FEO:MU-OXO-DIIRON'>FEO</scene></td></tr>
{{STRUCTURE_2av8|  PDB=2av8  |  SCENE=  }}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2av8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2av8 OCA], [https://pdbe.org/2av8 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2av8 RCSB], [https://www.ebi.ac.uk/pdbsum/2av8 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2av8 ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/RIR2_ECOLI RIR2_ECOLI] Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R2 contains the tyrosyl radical required for catalysis.
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/av/2av8_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2av8 ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Ribonucleotide reductase (RNR) from Escherichia coli catalyzes the conversion of ribonucleotides to deoxyribonucleotides. It is composed of two homodimeric subunits, R1 and R2. R2 contains the diferric-tyrosyl radical cofactor essential for the nucleotide reduction process. The in vitro mechanism of assembly of this cluster starting with apo R2 or with a diferrous form of R2 has been examined by time-resolved physical biochemical methods. An intermediate, Fe3+/Fe4+ cluster (intermediate X), has been identified that is thought to be directly involved in the oxidation of Y122 to the tyrosyl radical (*Y122). An R2 mutant in which phenylalanine has replaced Y122 has been used to accumulate intermediate X at sufficient levels that it can be studied using a variety of spectroscopic methods. The details of the reconstitution of the apo and diferrous forms of Y122F R2 have been examined by stopped-flow UV/vis spectroscopy and by rapid freeze quench electron paramagnetic resonance, and Mossbauer spectroscopies. In addition the structure of this mutant, crystallized at pH 7.6 in the absence of mercury, at 2.46 A resolution has been determined. These studies suggest that Y122F R2 is an appropriate model for the examination of intermediate X in the assembly process. Studies with two mutants, Y356F and double mutant Y356F and Y122F R2, are interpreted in terms of the possible role of Y356 in the putative electron transfer reaction between the R1 and R2 subunits of this RNR.


===Y122F MUTANT OF RIBONUCLEOTIDE REDUCTASE FROM ESCHERICHIA COLI===
Characterization of Y122F R2 of Escherichia coli ribonucleotide reductase by time-resolved physical biochemical methods and X-ray crystallography.,Tong W, Burdi D, Riggs-Gelasco P, Chen S, Edmondson D, Huynh BH, Stubbe J, Han S, Arvai A, Tainer J Biochemistry. 1998 Apr 28;37(17):5840-8. PMID:9558317<ref>PMID:9558317</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 2av8" style="background-color:#fffaf0;"></div>


<!--
==See Also==
The line below this paragraph, {{ABSTRACT_PUBMED_9558317}}, adds the Publication Abstract to the page
*[[Ribonucleotide reductase 3D structures|Ribonucleotide reductase 3D structures]]
(as it appears on PubMed at http://www.pubmed.gov), where 9558317 is the PubMed ID number.
== References ==
-->
<references/>
{{ABSTRACT_PUBMED_9558317}}
__TOC__
 
</StructureSection>
==About this Structure==
2AV8 is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2AV8 OCA].
 
==Reference==
Characterization of Y122F R2 of Escherichia coli ribonucleotide reductase by time-resolved physical biochemical methods and X-ray crystallography., Tong W, Burdi D, Riggs-Gelasco P, Chen S, Edmondson D, Huynh BH, Stubbe J, Han S, Arvai A, Tainer J, Biochemistry. 1998 Apr 28;37(17):5840-8. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/9558317 9558317]
[[Category: Escherichia coli]]
[[Category: Escherichia coli]]
[[Category: Ribonucleoside-diphosphate reductase]]
[[Category: Large Structures]]
[[Category: Single protein]]
[[Category: Arvai A]]
[[Category: Arvai, A.]]
[[Category: Han S]]
[[Category: Han, S.]]
[[Category: Tainer JA]]
[[Category: Tainer, J A.]]
[[Category: Dna replication]]
[[Category: Oxidoreductase]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Tue Jul 29 00:26:02 2008''

Latest revision as of 09:41, 9 August 2023

Y122F MUTANT OF RIBONUCLEOTIDE REDUCTASE FROM ESCHERICHIA COLIY122F MUTANT OF RIBONUCLEOTIDE REDUCTASE FROM ESCHERICHIA COLI

Structural highlights

2av8 is a 2 chain structure with sequence from Escherichia coli. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.46Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

RIR2_ECOLI Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R2 contains the tyrosyl radical required for catalysis.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Ribonucleotide reductase (RNR) from Escherichia coli catalyzes the conversion of ribonucleotides to deoxyribonucleotides. It is composed of two homodimeric subunits, R1 and R2. R2 contains the diferric-tyrosyl radical cofactor essential for the nucleotide reduction process. The in vitro mechanism of assembly of this cluster starting with apo R2 or with a diferrous form of R2 has been examined by time-resolved physical biochemical methods. An intermediate, Fe3+/Fe4+ cluster (intermediate X), has been identified that is thought to be directly involved in the oxidation of Y122 to the tyrosyl radical (*Y122). An R2 mutant in which phenylalanine has replaced Y122 has been used to accumulate intermediate X at sufficient levels that it can be studied using a variety of spectroscopic methods. The details of the reconstitution of the apo and diferrous forms of Y122F R2 have been examined by stopped-flow UV/vis spectroscopy and by rapid freeze quench electron paramagnetic resonance, and Mossbauer spectroscopies. In addition the structure of this mutant, crystallized at pH 7.6 in the absence of mercury, at 2.46 A resolution has been determined. These studies suggest that Y122F R2 is an appropriate model for the examination of intermediate X in the assembly process. Studies with two mutants, Y356F and double mutant Y356F and Y122F R2, are interpreted in terms of the possible role of Y356 in the putative electron transfer reaction between the R1 and R2 subunits of this RNR.

Characterization of Y122F R2 of Escherichia coli ribonucleotide reductase by time-resolved physical biochemical methods and X-ray crystallography.,Tong W, Burdi D, Riggs-Gelasco P, Chen S, Edmondson D, Huynh BH, Stubbe J, Han S, Arvai A, Tainer J Biochemistry. 1998 Apr 28;37(17):5840-8. PMID:9558317[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Tong W, Burdi D, Riggs-Gelasco P, Chen S, Edmondson D, Huynh BH, Stubbe J, Han S, Arvai A, Tainer J. Characterization of Y122F R2 of Escherichia coli ribonucleotide reductase by time-resolved physical biochemical methods and X-ray crystallography. Biochemistry. 1998 Apr 28;37(17):5840-8. PMID:9558317 doi:10.1021/bi9728811

2av8, resolution 2.46Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA