1nuc: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:1nuc.gif|left|200px]]
<!--
The line below this paragraph, containing "STRUCTURE_1nuc", creates the "Structure Box" on the page.
You may change the PDB parameter (which sets the PDB file loaded into the applet)
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
or leave the SCENE parameter empty for the default display.
-->
{{STRUCTURE_1nuc|  PDB=1nuc  |  SCENE=  }}
'''STAPHYLOCOCCAL NUCLEASE, V23C VARIANT'''


==STAPHYLOCOCCAL NUCLEASE, V23C VARIANT==
<StructureSection load='1nuc' size='340' side='right'caption='[[1nuc]], [[Resolution|resolution]] 1.90&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[1nuc]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Staphylococcus_aureus Staphylococcus aureus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1NUC OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1NUC FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.9&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=THP:THYMIDINE-3,5-DIPHOSPHATE'>THP</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1nuc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1nuc OCA], [https://pdbe.org/1nuc PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1nuc RCSB], [https://www.ebi.ac.uk/pdbsum/1nuc PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1nuc ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/NUC_STAAU NUC_STAAU] Enzyme that catalyzes the hydrolysis of both DNA and RNA at the 5' position of the phosphodiester bond.
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/nu/1nuc_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1nuc ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The structures of several variants of staphylococcal nuclease with long flexible unnatural amino acid side chains in the hydrophobic core have been determined by X-ray crystallography. The unnatural amino acids are disulfide moieties between the lone cysteine residue in V23C nuclease and methane, ethane, 1-n-propane, 1-n-butane, 1-n-pentane, and 2-hydroxyethyl thiols. We have examined changes in the core packing of these mutants. Side chains as large as the 1-n-propyl cysteine disulfide can be incorporated without perturbation of the structure. This is due, in part, to cavities present in the wild-type protein. The longest side chains are not well defined, even though they remain buried within the protein interior. These results suggest that the enthalpy-entropy balance that governs the rigidity of protein interiors favors tight packing only weakly. Additionally, the tight packing observed normally in protein interiors may reflect, in part, the limited numbers of rotamers available to the natural amino acids.


==Overview==
Mobile unnatural amino acid side chains in the core of staphylococcal nuclease.,Wynn R, Harkins PC, Richards FM, Fox RO Protein Sci. 1996 Jun;5(6):1026-31. PMID:8762134<ref>PMID:8762134</ref>
The structures of several variants of staphylococcal nuclease with long flexible unnatural amino acid side chains in the hydrophobic core have been determined by X-ray crystallography. The unnatural amino acids are disulfide moieties between the lone cysteine residue in V23C nuclease and methane, ethane, 1-n-propane, 1-n-butane, 1-n-pentane, and 2-hydroxyethyl thiols. We have examined changes in the core packing of these mutants. Side chains as large as the 1-n-propyl cysteine disulfide can be incorporated without perturbation of the structure. This is due, in part, to cavities present in the wild-type protein. The longest side chains are not well defined, even though they remain buried within the protein interior. These results suggest that the enthalpy-entropy balance that governs the rigidity of protein interiors favors tight packing only weakly. Additionally, the tight packing observed normally in protein interiors may reflect, in part, the limited numbers of rotamers available to the natural amino acids.


==About this Structure==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
1NUC is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Staphylococcus_aureus Staphylococcus aureus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1NUC OCA].
</div>
<div class="pdbe-citations 1nuc" style="background-color:#fffaf0;"></div>


==Reference==
==See Also==
Mobile unnatural amino acid side chains in the core of staphylococcal nuclease., Wynn R, Harkins PC, Richards FM, Fox RO, Protein Sci. 1996 Jun;5(6):1026-31. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/8762134 8762134]
*[[Staphylococcal nuclease 3D structures|Staphylococcal nuclease 3D structures]]
[[Category: Micrococcal nuclease]]
== References ==
[[Category: Single protein]]
<references/>
__TOC__
</StructureSection>
[[Category: Large Structures]]
[[Category: Staphylococcus aureus]]
[[Category: Staphylococcus aureus]]
[[Category: Fox, R O.]]
[[Category: Fox RO]]
[[Category: Harkins, P C.]]
[[Category: Harkins PC]]
[[Category: Richards, F M.]]
[[Category: Richards FM]]
[[Category: Wynn, R.]]
[[Category: Wynn R]]
[[Category: Nuclease]]
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sat May  3 02:59:26 2008''

Latest revision as of 09:31, 9 August 2023

STAPHYLOCOCCAL NUCLEASE, V23C VARIANTSTAPHYLOCOCCAL NUCLEASE, V23C VARIANT

Structural highlights

1nuc is a 1 chain structure with sequence from Staphylococcus aureus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.9Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

NUC_STAAU Enzyme that catalyzes the hydrolysis of both DNA and RNA at the 5' position of the phosphodiester bond.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The structures of several variants of staphylococcal nuclease with long flexible unnatural amino acid side chains in the hydrophobic core have been determined by X-ray crystallography. The unnatural amino acids are disulfide moieties between the lone cysteine residue in V23C nuclease and methane, ethane, 1-n-propane, 1-n-butane, 1-n-pentane, and 2-hydroxyethyl thiols. We have examined changes in the core packing of these mutants. Side chains as large as the 1-n-propyl cysteine disulfide can be incorporated without perturbation of the structure. This is due, in part, to cavities present in the wild-type protein. The longest side chains are not well defined, even though they remain buried within the protein interior. These results suggest that the enthalpy-entropy balance that governs the rigidity of protein interiors favors tight packing only weakly. Additionally, the tight packing observed normally in protein interiors may reflect, in part, the limited numbers of rotamers available to the natural amino acids.

Mobile unnatural amino acid side chains in the core of staphylococcal nuclease.,Wynn R, Harkins PC, Richards FM, Fox RO Protein Sci. 1996 Jun;5(6):1026-31. PMID:8762134[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Wynn R, Harkins PC, Richards FM, Fox RO. Mobile unnatural amino acid side chains in the core of staphylococcal nuclease. Protein Sci. 1996 Jun;5(6):1026-31. PMID:8762134 doi:http://dx.doi.org/10.1002/pro.5560050605

1nuc, resolution 1.90Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA