1bzc: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(12 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:1bzc.jpg|left|200px]]
<!--
The line below this paragraph, containing "STRUCTURE_1bzc", creates the "Structure Box" on the page.
You may change the PDB parameter (which sets the PDB file loaded into the applet)
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
or leave the SCENE parameter empty for the default display.
-->
{{STRUCTURE_1bzc|  PDB=1bzc  |  SCENE=  }}
'''HUMAN PTP1B CATALYTIC DOMAIN COMPLEXED WITH TPI'''


==HUMAN PTP1B CATALYTIC DOMAIN COMPLEXED WITH TPI==
<StructureSection load='1bzc' size='340' side='right'caption='[[1bzc]], [[Resolution|resolution]] 2.35&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[1bzc]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1BZC OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1BZC FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.35&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=TPI:4-CARBAMOYL-4-{[6-(DIFLUORO-PHOSPHONO-METHYL)-NAPHTHALENE-2-CARBONYL]-AMINO}-BUTYRIC+ACID'>TPI</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1bzc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1bzc OCA], [https://pdbe.org/1bzc PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1bzc RCSB], [https://www.ebi.ac.uk/pdbsum/1bzc PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1bzc ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/PTN1_HUMAN PTN1_HUMAN] Tyrosine-protein phosphatase which acts as a regulator of endoplasmic reticulum unfolded protein response. Mediates dephosphorylation of EIF2AK3/PERK; inactivating the protein kinase activity of EIF2AK3/PERK. May play an important role in CKII- and p60c-src-induced signal transduction cascades. May regulate the EFNA5-EPHA3 signaling pathway which modulates cell reorganization and cell-cell repulsion.<ref>PMID:21135139</ref> <ref>PMID:22169477</ref>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/bz/1bzc_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1bzc ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Protein tyrosine phosphatases regulate diverse cellular processes and represent important targets for therapeutic intervention in a number of diseases. The crystal structures of protein tyrosine phosphatase 1B (PTP1B) in complex with small molecule inhibitors based upon two classes of phosphotyrosine mimetics, the (difluoronaphthylmethyl)phosphonic acids and the fluoromalonyl tyrosines, have been determined to resolutions greater than 2.3 A. The fluoromalonyl tyrosine residue was incorporated within a cyclic hexapeptide modeled on an autophosphorylation site of the epidermal growth factor receptor. The structure of this inhibitor bound to PTP1B represents the first crystal structure of a non-phosphonate-containing inhibitor and reveals the mechanism of phosphotyrosine mimicry by the fluoromalonyl tyrosine residue and the nature of its interactions within the catalytic site of PTP1B. In contrast to complexes of PTP1B with phosphotyrosine-containing peptides, binding of the fluoromalonyl tyrosine residue to the catalytic site of PTP1B is not accompanied by closure of the catalytic site WPD loop. Structures of PTP1B in complex with the (difluoronaphthylmethyl)phosphonic acid derivatives reveal that substitutions of the naphthalene ring modulate the mode of inhibitor binding to the catalytic site and provide the potential for enhanced inhibitor affinity and the generation of PTP-specific inhibitors. These results provide a framework for the rational design of higher affinity and more specific phosphotyrosine mimetic inhibitors of not only protein tyrosine phosphatases but also SH2 and PTB domains.


==Overview==
Structural basis for inhibition of the protein tyrosine phosphatase 1B by phosphotyrosine peptide mimetics.,Groves MR, Yao ZJ, Roller PP, Burke TR Jr, Barford D Biochemistry. 1998 Dec 22;37(51):17773-83. PMID:9922143<ref>PMID:9922143</ref>
Protein tyrosine phosphatases regulate diverse cellular processes and represent important targets for therapeutic intervention in a number of diseases. The crystal structures of protein tyrosine phosphatase 1B (PTP1B) in complex with small molecule inhibitors based upon two classes of phosphotyrosine mimetics, the (difluoronaphthylmethyl)phosphonic acids and the fluoromalonyl tyrosines, have been determined to resolutions greater than 2.3 A. The fluoromalonyl tyrosine residue was incorporated within a cyclic hexapeptide modeled on an autophosphorylation site of the epidermal growth factor receptor. The structure of this inhibitor bound to PTP1B represents the first crystal structure of a non-phosphonate-containing inhibitor and reveals the mechanism of phosphotyrosine mimicry by the fluoromalonyl tyrosine residue and the nature of its interactions within the catalytic site of PTP1B. In contrast to complexes of PTP1B with phosphotyrosine-containing peptides, binding of the fluoromalonyl tyrosine residue to the catalytic site of PTP1B is not accompanied by closure of the catalytic site WPD loop. Structures of PTP1B in complex with the (difluoronaphthylmethyl)phosphonic acid derivatives reveal that substitutions of the naphthalene ring modulate the mode of inhibitor binding to the catalytic site and provide the potential for enhanced inhibitor affinity and the generation of PTP-specific inhibitors. These results provide a framework for the rational design of higher affinity and more specific phosphotyrosine mimetic inhibitors of not only protein tyrosine phosphatases but also SH2 and PTB domains.


==About this Structure==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
1BZC is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1BZC OCA].
</div>
<div class="pdbe-citations 1bzc" style="background-color:#fffaf0;"></div>


==Reference==
==See Also==
Structural basis for inhibition of the protein tyrosine phosphatase 1B by phosphotyrosine peptide mimetics., Groves MR, Yao ZJ, Roller PP, Burke TR Jr, Barford D, Biochemistry. 1998 Dec 22;37(51):17773-83. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/9922143 9922143]
*[[Tyrosine phosphatase 3D structures|Tyrosine phosphatase 3D structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Protein-tyrosine-phosphatase]]
[[Category: Large Structures]]
[[Category: Single protein]]
[[Category: Barford D]]
[[Category: Barford, D.]]
[[Category: Groves MR]]
[[Category: Burke, T R.Jr.]]
[[Category: Jr Burke TR]]
[[Category: Groves, M R.]]
[[Category: Yao ZJ]]
[[Category: Yao, Z J.]]
[[Category: Inhibitor complex]]
[[Category: Tyrosine phosphatase]]
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Fri May  2 12:08:48 2008''

Latest revision as of 08:46, 9 August 2023

HUMAN PTP1B CATALYTIC DOMAIN COMPLEXED WITH TPIHUMAN PTP1B CATALYTIC DOMAIN COMPLEXED WITH TPI

Structural highlights

1bzc is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.35Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PTN1_HUMAN Tyrosine-protein phosphatase which acts as a regulator of endoplasmic reticulum unfolded protein response. Mediates dephosphorylation of EIF2AK3/PERK; inactivating the protein kinase activity of EIF2AK3/PERK. May play an important role in CKII- and p60c-src-induced signal transduction cascades. May regulate the EFNA5-EPHA3 signaling pathway which modulates cell reorganization and cell-cell repulsion.[1] [2]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Protein tyrosine phosphatases regulate diverse cellular processes and represent important targets for therapeutic intervention in a number of diseases. The crystal structures of protein tyrosine phosphatase 1B (PTP1B) in complex with small molecule inhibitors based upon two classes of phosphotyrosine mimetics, the (difluoronaphthylmethyl)phosphonic acids and the fluoromalonyl tyrosines, have been determined to resolutions greater than 2.3 A. The fluoromalonyl tyrosine residue was incorporated within a cyclic hexapeptide modeled on an autophosphorylation site of the epidermal growth factor receptor. The structure of this inhibitor bound to PTP1B represents the first crystal structure of a non-phosphonate-containing inhibitor and reveals the mechanism of phosphotyrosine mimicry by the fluoromalonyl tyrosine residue and the nature of its interactions within the catalytic site of PTP1B. In contrast to complexes of PTP1B with phosphotyrosine-containing peptides, binding of the fluoromalonyl tyrosine residue to the catalytic site of PTP1B is not accompanied by closure of the catalytic site WPD loop. Structures of PTP1B in complex with the (difluoronaphthylmethyl)phosphonic acid derivatives reveal that substitutions of the naphthalene ring modulate the mode of inhibitor binding to the catalytic site and provide the potential for enhanced inhibitor affinity and the generation of PTP-specific inhibitors. These results provide a framework for the rational design of higher affinity and more specific phosphotyrosine mimetic inhibitors of not only protein tyrosine phosphatases but also SH2 and PTB domains.

Structural basis for inhibition of the protein tyrosine phosphatase 1B by phosphotyrosine peptide mimetics.,Groves MR, Yao ZJ, Roller PP, Burke TR Jr, Barford D Biochemistry. 1998 Dec 22;37(51):17773-83. PMID:9922143[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Nievergall E, Janes PW, Stegmayer C, Vail ME, Haj FG, Teng SW, Neel BG, Bastiaens PI, Lackmann M. PTP1B regulates Eph receptor function and trafficking. J Cell Biol. 2010 Dec 13;191(6):1189-203. doi: 10.1083/jcb.201005035. Epub 2010, Dec 6. PMID:21135139 doi:10.1083/jcb.201005035
  2. Krishnan N, Fu C, Pappin DJ, Tonks NK. H2S-Induced sulfhydration of the phosphatase PTP1B and its role in the endoplasmic reticulum stress response. Sci Signal. 2011 Dec 13;4(203):ra86. doi: 10.1126/scisignal.2002329. PMID:22169477 doi:10.1126/scisignal.2002329
  3. Groves MR, Yao ZJ, Roller PP, Burke TR Jr, Barford D. Structural basis for inhibition of the protein tyrosine phosphatase 1B by phosphotyrosine peptide mimetics. Biochemistry. 1998 Dec 22;37(51):17773-83. PMID:9922143

1bzc, resolution 2.35Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA