1b8c: Difference between revisions
No edit summary |
No edit summary |
||
(11 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==PARVALBUMIN== | |||
<StructureSection load='1b8c' size='340' side='right'caption='[[1b8c]], [[Resolution|resolution]] 2.00Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1b8c]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Cyprinus_carpio Cyprinus carpio]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1B8C OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1B8C FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1b8c FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1b8c OCA], [https://pdbe.org/1b8c PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1b8c RCSB], [https://www.ebi.ac.uk/pdbsum/1b8c PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1b8c ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/PRVB_CYPCA PRVB_CYPCA] In muscle, parvalbumin is thought to be involved in relaxation after contraction. It binds two calcium ions. | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/b8/1b8c_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1b8c ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
BACKGROUND: The EF-hand family is a large set of Ca(2+)-binding proteins that contain characteristic helix-loop-helix binding motifs that are highly conserved in sequence. Members of this family include parvalbumin and many prominent regulatory proteins such as calmodulin and troponin C. EF-hand proteins are involved in a variety of physiological processes including cell-cycle regulation, second messenger production, muscle contraction, microtubule organization and vision. RESULTS: We have determined the structures of parvalbumin mutants designed to explore the role of the last coordinating residue of the Ca(2+)-binding loop. An E101D substitution has been made in the parvalbumin EF site. The substitution decreases the Ca(2+)-binding affinity 100-fold and increases the Mg(2+)-binding affinity 10-fold. Both the Ca(2+)- and Mg(2+)-bound structures have been determined, and a structural basis has been proposed for the metal-ion-binding properties. CONCLUSIONS: The E101D mutation does not affect the Mg(2+) coordination geometry of the binding loop, but it does pull the F helix 1.1 A towards the loop. The E101D-Ca(2+) structure reveals that this mutant cannot obtain the sevenfold coordination preferred by Ca(2+), presumably because of strain limits imposed by tertiary structure. Analysis of these results relative to previously reported structural information supports a model wherein the characteristics of the last coordinating residue and the plasticity of the Ca(2+)-binding loop delimit the allowable geometries for the coordinating sphere. | |||
Metal-ion affinity and specificity in EF-hand proteins: coordination geometry and domain plasticity in parvalbumin.,Cates MS, Berry MB, Ho EL, Li Q, Potter JD, Phillips GN Jr Structure. 1999 Oct 15;7(10):1269-78. PMID:10545326<ref>PMID:10545326</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 1b8c" style="background-color:#fffaf0;"></div> | |||
==See Also== | ==See Also== | ||
*[[Parvalbumin|Parvalbumin]] | *[[Parvalbumin|Parvalbumin]] | ||
== References == | |||
== | <references/> | ||
< | __TOC__ | ||
</StructureSection> | |||
[[Category: Cyprinus carpio]] | [[Category: Cyprinus carpio]] | ||
[[Category: Berry | [[Category: Large Structures]] | ||
[[Category: Cates | [[Category: Berry MB]] | ||
[[Category: Ho | [[Category: Cates MS]] | ||
[[Category: Li | [[Category: Ho EL]] | ||
[[Category: Phillips | [[Category: Li Q]] | ||
[[Category: Potter | [[Category: Phillips Jr GN]] | ||
[[Category: Potter JD]] | |||