1av4: Difference between revisions
No edit summary |
No edit summary |
||
(10 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
< | ==CRYSTAL STRUCTURES OF THE COPPER-CONTAINING AMINE OXIDASE FROM ARTHROBACTER GLOBIFORMIS IN THE HOLO-AND APO-FORMS: IMPLICATIONS FOR THE BIOGENESIS OF TOPA QUINONE== | ||
<StructureSection load='1av4' size='340' side='right'caption='[[1av4]], [[Resolution|resolution]] 2.20Å' scene=''> | |||
You may | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1av4]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Arthrobacter_globiformis Arthrobacter globiformis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1AV4 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1AV4 FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.2Å</td></tr> | |||
- | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CU:COPPER+(II)+ION'>CU</scene>, <scene name='pdbligand=TPQ:5-(2-CARBOXY-2-AMINOETHYL)-2-HYDROXY-1,4-BENZOQUINONE'>TPQ</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1av4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1av4 OCA], [https://pdbe.org/1av4 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1av4 RCSB], [https://www.ebi.ac.uk/pdbsum/1av4 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1av4 ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/PAOX_ARTGO PAOX_ARTGO] | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/av/1av4_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1av4 ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The crystal structures of the copper enzyme phenylethylamine oxidase from the Gram-positive bacterium Arthrobacter globiformis (AGAO) have been determined and refined for three forms of the enzyme: the holoenzyme in its active form (at 2.2 A resolution), the holoenzyme in an inactive form (at 2.8 A resolution), and the apoenzyme (at 2.2 A resolution). The holoenzyme has a topaquinone (TPQ) cofactor formed from the apoenzyme by the post-translational modification of a tyrosine residue in the presence of Cu2+. Significant differences between the three forms of AGAO are limited to the active site. The polypeptide fold is closely similar to those of the amine oxidases from Escherichia coli [Parsons, M. R., et al. (1995) Structure 3, 1171-1184] and pea seedlings [Kumar, V., et al. (1996) Structure 4, 943-955]. In the active form of holo-AGAO, the active-site Cu atom is coordinated by three His residues and two water molecules in an approximately square-pyramidal arrangement. In the inactive form, the Cu atom is coordinated by the same three His residues and by the phenolic oxygen of the TPQ, the geometry being quasi-trigonal-pyramidal. There is evidence of disorder in the crystals of both forms of holo-AGAO. As a result, only the position of the aromatic group of the TPQ cofactor, but not its orientation about the Cbeta-Cgamma bond, is determined unequivocally. In apo-AGAO, electron density consistent with an unmodified Tyr occurs at a position close to that of the TPQ in the inactive holo-AGAO. This observation has implications for the biogenesis of TPQ. Two features which have not been described previously in amine oxidase structures are a channel from the molecular surface to the active site and a solvent-filled cavity at the major interface between the two subunits of the dimer. | |||
Crystal structures of the copper-containing amine oxidase from Arthrobacter globiformis in the holo and apo forms: implications for the biogenesis of topaquinone.,Wilce MC, Dooley DM, Freeman HC, Guss JM, Matsunami H, McIntire WS, Ruggiero CE, Tanizawa K, Yamaguchi H Biochemistry. 1997 Dec 23;36(51):16116-33. PMID:9405045<ref>PMID:9405045</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 1av4" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Copper amine oxidase 3D structures|Copper amine oxidase 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
== | |||
== | |||
< | |||
[[Category: Arthrobacter globiformis]] | [[Category: Arthrobacter globiformis]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: | [[Category: Freeman HC]] | ||
[[Category: | [[Category: Guss JM]] | ||
[[Category: | [[Category: Wilce MCJ]] | ||