2rbp: Difference between revisions

No edit summary
No edit summary
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:2rbp.png|left|200px]]


{{STRUCTURE_2rbp| PDB=2rbp | SCENE= }}
==2-(n-propylthio)ethanol in complex with T4 lysozyme L99A/M102Q==
<StructureSection load='2rbp' size='340' side='right'caption='[[2rbp]], [[Resolution|resolution]] 1.47&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[2rbp]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_virus_T4 Escherichia virus T4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2RBP OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2RBP FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.467&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=266:2-(PROPYLSULFANYL)ETHANOL'>266</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2rbp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2rbp OCA], [https://pdbe.org/2rbp PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2rbp RCSB], [https://www.ebi.ac.uk/pdbsum/2rbp PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2rbp ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/ENLYS_BPT4 ENLYS_BPT4] Endolysin with lysozyme activity that degrades host peptidoglycans and participates with the holin and spanin proteins in the sequential events which lead to the programmed host cell lysis releasing the mature viral particles. Once the holin has permeabilized the host cell membrane, the endolysin can reach the periplasm and break down the peptidoglycan layer.<ref>PMID:22389108</ref>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Molecular docking computationally screens thousands to millions of organic molecules against protein structures, looking for those with complementary fits. Many approximations are made, often resulting in low "hit rates." A strategy to overcome these approximations is to rescore top-ranked docked molecules using a better but slower method. One such is afforded by molecular mechanics-generalized Born surface area (MM-GBSA) techniques. These more physically realistic methods have improved models for solvation and electrostatic interactions and conformational change compared to most docking programs. To investigate MM-GBSA rescoring, we re-ranked docking hit lists in three small buried sites: a hydrophobic cavity that binds apolar ligands, a slightly polar cavity that binds aryl and hydrogen-bonding ligands, and an anionic cavity that binds cationic ligands. These sites are simple; consequently, incorrect predictions can be attributed to particular errors in the method, and many likely ligands may actually be tested. In retrospective calculations, MM-GBSA techniques with binding-site minimization better distinguished the known ligands for each cavity from the known decoys compared to the docking calculation alone. This encouraged us to test rescoring prospectively on molecules that ranked poorly by docking but that ranked well when rescored by MM-GBSA. A total of 33 molecules highly ranked by MM-GBSA for the three cavities were tested experimentally. Of these, 23 were observed to bind--these are docking false negatives rescued by rescoring. The 10 remaining molecules are true negatives by docking and false positives by MM-GBSA. X-ray crystal structures were determined for 21 of these 23 molecules. In many cases, the geometry prediction by MM-GBSA improved the initial docking pose and more closely resembled the crystallographic result; yet in several cases, the rescored geometry failed to capture large conformational changes in the protein. Intriguingly, rescoring not only rescued docking false positives, but also introduced several new false positives into the top-ranking molecules. We consider the origins of the successes and failures in MM-GBSA rescoring in these model cavity sites and the prospects for rescoring in biologically relevant targets.


===2-(n-propylthio)ethanol in complex with T4 lysozyme L99A/M102Q===
Rescoring docking hit lists for model cavity sites: predictions and experimental testing.,Graves AP, Shivakumar DM, Boyce SE, Jacobson MP, Case DA, Shoichet BK J Mol Biol. 2008 Mar 28;377(3):914-34. Epub 2008 Jan 30. PMID:18280498<ref>PMID:18280498</ref>


{{ABSTRACT_PUBMED_18280498}}
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
</div>
==About this Structure==
<div class="pdbe-citations 2rbp" style="background-color:#fffaf0;"></div>
[[2rbp]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Enterobacteria_phage_t4 Enterobacteria phage t4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2RBP OCA].


==See Also==
==See Also==
*[[Hen Egg-White (HEW) Lysozyme|Hen Egg-White (HEW) Lysozyme]]
*[[Lysozyme 3D structures|Lysozyme 3D structures]]
 
== References ==
==Reference==
<references/>
<ref group="xtra">PMID:018280498</ref><references group="xtra"/>
__TOC__
[[Category: Enterobacteria phage t4]]
</StructureSection>
[[Category: Lysozyme]]
[[Category: Escherichia virus T4]]
[[Category: Boyce, S E.]]
[[Category: Large Structures]]
[[Category: Graves, A P.]]
[[Category: Boyce SE]]
[[Category: Shoichet, B K.]]
[[Category: Graves AP]]
[[Category: Hydrolase]]
[[Category: Shoichet BK]]
[[Category: Protein cavity]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA