5ejz: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:


==Bacterial Cellulose Synthase Product-Bound State==
==Bacterial Cellulose Synthase Product-Bound State==
<StructureSection load='5ejz' size='340' side='right' caption='[[5ejz]], [[Resolution|resolution]] 2.94&Aring;' scene=''>
<StructureSection load='5ejz' size='340' side='right'caption='[[5ejz]], [[Resolution|resolution]] 2.94&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[5ejz]] is a 3 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5EJZ OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5EJZ FirstGlance]. <br>
<table><tr><td colspan='2'>[[5ejz]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Cereibacter_sphaeroides Cereibacter sphaeroides] and [https://en.wikipedia.org/wiki/Cereibacter_sphaeroides_2.4.1 Cereibacter sphaeroides 2.4.1]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5EJZ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5EJZ FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=3PE:1,2-DIACYL-SN-GLYCERO-3-PHOSPHOETHANOLAMINE'>3PE</scene>, <scene name='pdbligand=BGC:BETA-D-GLUCOSE'>BGC</scene>, <scene name='pdbligand=C2E:9,9-[(2R,3R,3aS,5S,7aR,9R,10R,10aS,12S,14aR)-3,5,10,12-tetrahydroxy-5,12-dioxidooctahydro-2H,7H-difuro[3,2-d 3,2-j][1,3,7,9,2,8]tetraoxadiphosphacyclododecine-2,9-diyl]bis(2-amino-1,9-dihydro-6H-purin-6-one)'>C2E</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=PLC:DIUNDECYL+PHOSPHATIDYL+CHOLINE'>PLC</scene>, <scene name='pdbligand=SHG:2-DEOXY-2-FLUORO-BETA-D-GLUCOPYRANOSE'>SHG</scene>, <scene name='pdbligand=UDP:URIDINE-5-DIPHOSPHATE'>UDP</scene>, <scene name='pdbligand=UND:UNDECANE'>UND</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.94&#8491;</td></tr>
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=UNK:UNKNOWN'>UNK</scene></td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=3PE:1,2-DIACYL-SN-GLYCERO-3-PHOSPHOETHANOLAMINE'>3PE</scene>, <scene name='pdbligand=BGC:BETA-D-GLUCOSE'>BGC</scene>, <scene name='pdbligand=C2E:9,9-[(2R,3R,3aS,5S,7aR,9R,10R,10aS,12S,14aR)-3,5,10,12-tetrahydroxy-5,12-dioxidooctahydro-2H,7H-difuro[3,2-d 3,2-j][1,3,7,9,2,8]tetraoxadiphosphacyclododecine-2,9-diyl]bis(2-amino-1,9-dihydro-6H-purin-6-one)'>C2E</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=PLC:DIUNDECYL+PHOSPHATIDYL+CHOLINE'>PLC</scene>, <scene name='pdbligand=SHG:2-DEOXY-2-FLUORO-BETA-D-GLUCOPYRANOSE'>SHG</scene>, <scene name='pdbligand=UDP:URIDINE-5-DIPHOSPHATE'>UDP</scene>, <scene name='pdbligand=UND:UNDECANE'>UND</scene></td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5eiy|5eiy]], [[5ej1|5ej1]]</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5ejz FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5ejz OCA], [https://pdbe.org/5ejz PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5ejz RCSB], [https://www.ebi.ac.uk/pdbsum/5ejz PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5ejz ProSAT]</span></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Cellulose_synthase_(UDP-forming) Cellulose synthase (UDP-forming)], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.4.1.12 2.4.1.12] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5ejz FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5ejz OCA], [http://pdbe.org/5ejz PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5ejz RCSB], [http://www.ebi.ac.uk/pdbsum/5ejz PDBsum]</span></td></tr>
</table>
</table>
== Function ==
[https://www.uniprot.org/uniprot/Q3J125_CERS4 Q3J125_CERS4] Catalytic subunit of cellulose synthase. It polymerizes uridine 5'-diphosphate glucose to cellulose.[RuleBase:RU365020]
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Many biopolymers, including polysaccharides, must be translocated across at least one membrane to reach their site of biological function. Cellulose is a linear glucose polymer synthesized and secreted by a membrane-integrated cellulose synthase. Here, in crystallo enzymology with the catalytically active bacterial cellulose synthase BcsA-BcsB complex reveals structural snapshots of a complete cellulose biosynthesis cycle, from substrate binding to polymer translocation. Substrate- and product-bound structures of BcsA provide the basis for substrate recognition and demonstrate the stepwise elongation of cellulose. Furthermore, the structural snapshots show that BcsA translocates cellulose via a ratcheting mechanism involving a 'finger helix' that contacts the polymer's terminal glucose. Cooperating with BcsA's gating loop, the finger helix moves 'up' and 'down' in response to substrate binding and polymer elongation, respectively, thereby pushing the elongated polymer into BcsA's transmembrane channel. This mechanism is validated experimentally by tethering BcsA's finger helix, which inhibits polymer translocation but not elongation.
Observing cellulose biosynthesis and membrane translocation in crystallo.,Morgan JL, McNamara JT, Fischer M, Rich J, Chen HM, Withers SG, Zimmer J Nature. 2016 Mar 17;531(7594):329-34. doi: 10.1038/nature16966. Epub 2016 Mar 9. PMID:26958837<ref>PMID:26958837</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 5ejz" style="background-color:#fffaf0;"></div>
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Morgan, J L.W]]
[[Category: Cereibacter sphaeroides]]
[[Category: Zimmer, J]]
[[Category: Cereibacter sphaeroides 2 4.1]]
[[Category: Biopolymer]]
[[Category: Large Structures]]
[[Category: Cellulose synthase]]
[[Category: Morgan JLW]]
[[Category: Metal binding protein]]
[[Category: Zimmer J]]
[[Category: Translocation]]

Latest revision as of 09:31, 5 July 2023

Bacterial Cellulose Synthase Product-Bound StateBacterial Cellulose Synthase Product-Bound State

Structural highlights

5ejz is a 3 chain structure with sequence from Cereibacter sphaeroides and Cereibacter sphaeroides 2.4.1. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.94Å
Ligands:, , , , , , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

Q3J125_CERS4 Catalytic subunit of cellulose synthase. It polymerizes uridine 5'-diphosphate glucose to cellulose.[RuleBase:RU365020]

Publication Abstract from PubMed

Many biopolymers, including polysaccharides, must be translocated across at least one membrane to reach their site of biological function. Cellulose is a linear glucose polymer synthesized and secreted by a membrane-integrated cellulose synthase. Here, in crystallo enzymology with the catalytically active bacterial cellulose synthase BcsA-BcsB complex reveals structural snapshots of a complete cellulose biosynthesis cycle, from substrate binding to polymer translocation. Substrate- and product-bound structures of BcsA provide the basis for substrate recognition and demonstrate the stepwise elongation of cellulose. Furthermore, the structural snapshots show that BcsA translocates cellulose via a ratcheting mechanism involving a 'finger helix' that contacts the polymer's terminal glucose. Cooperating with BcsA's gating loop, the finger helix moves 'up' and 'down' in response to substrate binding and polymer elongation, respectively, thereby pushing the elongated polymer into BcsA's transmembrane channel. This mechanism is validated experimentally by tethering BcsA's finger helix, which inhibits polymer translocation but not elongation.

Observing cellulose biosynthesis and membrane translocation in crystallo.,Morgan JL, McNamara JT, Fischer M, Rich J, Chen HM, Withers SG, Zimmer J Nature. 2016 Mar 17;531(7594):329-34. doi: 10.1038/nature16966. Epub 2016 Mar 9. PMID:26958837[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Morgan JL, McNamara JT, Fischer M, Rich J, Chen HM, Withers SG, Zimmer J. Observing cellulose biosynthesis and membrane translocation in crystallo. Nature. 2016 Mar 17;531(7594):329-34. doi: 10.1038/nature16966. Epub 2016 Mar 9. PMID:26958837 doi:http://dx.doi.org/10.1038/nature16966

5ejz, resolution 2.94Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA