7r4d: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Bovine complex I in the presence of IM1761092, deactive class vi (Composite map)== | |||
<StructureSection load='7r4d' size='340' side='right'caption='[[7r4d]], [[Resolution|resolution]] 2.30Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[7r4d]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Bos_taurus Bos taurus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7R4D OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7R4D FirstGlance]. <br> | |||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=2MR:N3,+N4-DIMETHYLARGININE'>2MR</scene>, <scene name='pdbligand=3PE:1,2-DIACYL-SN-GLYCERO-3-PHOSPHOETHANOLAMINE'>3PE</scene>, <scene name='pdbligand=AME:N-ACETYLMETHIONINE'>AME</scene>, <scene name='pdbligand=AYA:N-ACETYLALANINE'>AYA</scene>, <scene name='pdbligand=CDL:CARDIOLIPIN'>CDL</scene>, <scene name='pdbligand=EHZ:~{S}-[2-[3-[[(2~{R})-3,3-dimethyl-2-oxidanyl-4-phosphonooxy-butanoyl]amino]propanoylamino]ethyl]+(3~{S})-3-oxidanyltetradecanethioate'>EHZ</scene>, <scene name='pdbligand=FES:FE2/S2+(INORGANIC)+CLUSTER'>FES</scene>, <scene name='pdbligand=FME:N-FORMYLMETHIONINE'>FME</scene>, <scene name='pdbligand=FMN:FLAVIN+MONONUCLEOTIDE'>FMN</scene>, <scene name='pdbligand=GTP:GUANOSINE-5-TRIPHOSPHATE'>GTP</scene>, <scene name='pdbligand=I49:1-carbamimidoyl-3-[2-(3-chloranyl-4-iodanyl-phenyl)ethyl]guanidine'>I49</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene>, <scene name='pdbligand=LMT:DODECYL-BETA-D-MALTOSIDE'>LMT</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=MYR:MYRISTIC+ACID'>MYR</scene>, <scene name='pdbligand=NDP:NADPH+DIHYDRO-NICOTINAMIDE-ADENINE-DINUCLEOTIDE+PHOSPHATE'>NDP</scene>, <scene name='pdbligand=PC1:1,2-DIACYL-SN-GLYCERO-3-PHOSPHOCHOLINE'>PC1</scene>, <scene name='pdbligand=SAC:N-ACETYL-SERINE'>SAC</scene>, <scene name='pdbligand=SF4:IRON/SULFUR+CLUSTER'>SF4</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7r4d FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7r4d OCA], [https://pdbe.org/7r4d PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7r4d RCSB], [https://www.ebi.ac.uk/pdbsum/7r4d PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7r4d ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/Q7JAS9_BOVIN Q7JAS9_BOVIN] Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) which catalyzes electron transfer from NADH through the respiratory chain, using ubiquinone as an electron acceptor. Essential for the catalytic activity of complex I.[ARBA:ARBA00024297][RuleBase:RU003640] | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The molecular mode of action of biguanides, including the drug metformin, which is widely used in the treatment of diabetes, is incompletely characterized. Here, we define the inhibitory drug-target interaction(s) of a model biguanide with mammalian respiratory complex I by combining cryo-electron microscopy and enzyme kinetics. We interpret these data to explain the selectivity of biguanide binding to different enzyme states. The primary inhibitory site is in an amphipathic region of the quinone-binding channel, and an additional binding site is in a pocket on the intermembrane-space side of the enzyme. An independent local chaotropic interaction, not previously described for any drug, displaces a portion of a key helix in the membrane domain. Our data provide a structural basis for biguanide action and enable the rational design of medicinal biguanides. | |||
Structural basis of mammalian respiratory complex I inhibition by medicinal biguanides.,Bridges HR, Blaza JN, Yin Z, Chung I, Pollak MN, Hirst J Science. 2023 Jan 27;379(6630):351-357. doi: 10.1126/science.ade3332. Epub 2023 , Jan 26. PMID:36701435<ref>PMID:36701435</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
[[Category: | </div> | ||
<div class="pdbe-citations 7r4d" style="background-color:#fffaf0;"></div> | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Bos taurus]] | |||
[[Category: Large Structures]] | |||
[[Category: Blaza JN]] | |||
[[Category: Bridges HR]] | |||
[[Category: Chung I]] | |||
[[Category: Hirst J]] | |||
[[Category: Yin Z]] |
Latest revision as of 09:40, 8 February 2023
Bovine complex I in the presence of IM1761092, deactive class vi (Composite map)Bovine complex I in the presence of IM1761092, deactive class vi (Composite map)
Structural highlights
FunctionQ7JAS9_BOVIN Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) which catalyzes electron transfer from NADH through the respiratory chain, using ubiquinone as an electron acceptor. Essential for the catalytic activity of complex I.[ARBA:ARBA00024297][RuleBase:RU003640] Publication Abstract from PubMedThe molecular mode of action of biguanides, including the drug metformin, which is widely used in the treatment of diabetes, is incompletely characterized. Here, we define the inhibitory drug-target interaction(s) of a model biguanide with mammalian respiratory complex I by combining cryo-electron microscopy and enzyme kinetics. We interpret these data to explain the selectivity of biguanide binding to different enzyme states. The primary inhibitory site is in an amphipathic region of the quinone-binding channel, and an additional binding site is in a pocket on the intermembrane-space side of the enzyme. An independent local chaotropic interaction, not previously described for any drug, displaces a portion of a key helix in the membrane domain. Our data provide a structural basis for biguanide action and enable the rational design of medicinal biguanides. Structural basis of mammalian respiratory complex I inhibition by medicinal biguanides.,Bridges HR, Blaza JN, Yin Z, Chung I, Pollak MN, Hirst J Science. 2023 Jan 27;379(6630):351-357. doi: 10.1126/science.ade3332. Epub 2023 , Jan 26. PMID:36701435[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|