Recombinase A: Difference between revisions
No edit summary |
Michal Harel (talk | contribs) No edit summary |
||
(8 intermediate revisions by 2 users not shown) | |||
Line 2: | Line 2: | ||
== Function == | == Function == | ||
[[Recombinase A]] (RecA), a naturally aggregating protein involved in DNA repair, is an important asset to the genetic integrity of the ''Escherichia coli'' (''E. coli'') genome.<ref name=Shan> Shan, Q.; Cox, M. M.; Inman, R. B. DNA Strand Exchange Promoted by RecA K72R. J. Biol. Chem. 1996, 271, 5712-5724. DOI:10.1074/jbc.271.10.5712 </ref> The survival of all species rely on such DNA repair processes. RecA homologues are found in all kingdoms including archaebacteria, eubacteria, and eukaryotes.<ref name=Brendel> Brendel, V.; Brocchieri, L.; Sandler, S.J.; Clark, A.J.; Karlin, S. Evolutionary comparisons of RecA-like proteins across all major kingdoms of living organisms. J. Mol. Evol. 1997, 44, 528-541. DOI: 10.1007/PL00006177 </ref> Rad51, for example, is a RecA homologue found specifically in humans.<ref name=Baumann> Baumann, P.; Benson, F. E.; West, S. C. Human Rad51 Protein Promotes ATP-Dependent Homologous Pairing and Strand Transfer Reactions in Vitro. Cell. 1996, 87, 757-766. DOI: 10.1016/S0092-8674(00)81394-X </ref> An over-expression of Rad51 in the nuclei of tumor cells when compared to those of normal breast tissue has been linked to sporadic, non-hereditary, breast cancers.<ref name=Maacke> Maacke, H.; Opitz, S.; Jost, K.; Hamdorf, W.; Henning, W. Krüger, S. Feller, A.C.; Lopens, A.; Diedrich, K.; Schwinger, E.; Stürzbecher, H.W. Over-expression of wild-type Rad51 correlates with histological grading of invasive ductal breast cancer. Int. J. Cancer. 2000, 88, 907-913. DOI: 10.1002/1097-0215(20001215)88:63.0.CO;2-4 </ref> See also [[Isomerases]]. | [[Recombinase A]] (RecA), a naturally aggregating protein involved in DNA repair, is an important asset to the genetic integrity of the ''Escherichia coli'' (''E. coli'') genome.<ref name=Shan> Shan, Q.; Cox, M. M.; Inman, R. B. DNA Strand Exchange Promoted by RecA K72R. J. Biol. Chem. 1996, 271, 5712-5724. DOI:10.1074/jbc.271.10.5712 </ref> The survival of all species rely on such DNA repair processes. RecA homologues are found in all kingdoms including archaebacteria, eubacteria, and eukaryotes.<ref name=Brendel> Brendel, V.; Brocchieri, L.; Sandler, S.J.; Clark, A.J.; Karlin, S. Evolutionary comparisons of RecA-like proteins across all major kingdoms of living organisms. J. Mol. Evol. 1997, 44, 528-541. DOI: 10.1007/PL00006177 </ref> Rad51, for example, is a RecA homologue found specifically in humans.<ref name=Baumann> Baumann, P.; Benson, F. E.; West, S. C. Human Rad51 Protein Promotes ATP-Dependent Homologous Pairing and Strand Transfer Reactions in Vitro. Cell. 1996, 87, 757-766. DOI: 10.1016/S0092-8674(00)81394-X </ref> An over-expression of Rad51 in the nuclei of tumor cells when compared to those of normal breast tissue has been linked to sporadic, non-hereditary, breast cancers.<ref name=Maacke> Maacke, H.; Opitz, S.; Jost, K.; Hamdorf, W.; Henning, W. Krüger, S. Feller, A.C.; Lopens, A.; Diedrich, K.; Schwinger, E.; Stürzbecher, H.W. Over-expression of wild-type Rad51 correlates with histological grading of invasive ductal breast cancer. Int. J. Cancer. 2000, 88, 907-913. DOI: 10.1002/1097-0215(20001215)88:63.0.CO;2-4 </ref> See also [[Isomerases]], [[DNA Repair]]. | ||
== DNA Repair == | == DNA Repair == | ||
Line 16: | Line 16: | ||
High salt concentrations have also been shown to be able to elongate the RecA protein filament as well. Petukhov et al. demonstrated that a high concentration of NaCl increased the helical pitch from 7.8 to 8.6 nm.<ref name=Peukhov> Peukhov, M.; Lebedev, D.; Shalguev, V.; Islamov, A.; Kruklin, A.; Lanzov, V.; Isaev-Ivanov, V. Conformational Flexibility of RecA Protein Filament: Transitions between Compressed and Stretched States. Proteins: Struct.,Funct., Bioinf. 2006,65, 296-304. DOI: 10.1002/prot.21116 </ref> Thus, high salt concentrations appear to induce the active (stretched) form of RecA in the absence of DNA.<ref name=Peukhov> Peukhov, M.; Lebedev, D.; Shalguev, V.; Islamov, A.; Kruklin, A.; Lanzov, V.; Isaev-Ivanov, V. Conformational Flexibility of RecA Protein Filament: Transitions between Compressed and Stretched States. Proteins: Struct.,Funct., Bioinf. 2006,65, 296-304. DOI: 10.1002/prot.21116 </ref> Other studies have found that the free Magnesium ion binds to RecA (see <scene name='41/413118/Reca_adp_mg/3'>binding sites</scene>; Mg ion is colored lime green) and extends the filament more than 150% compared to the filament when DNA is bound.<ref name=Lusetti> Lusetti, S. L.; Shaw, J. J.; Cox, M. M. Magnesium Ion-dependent Activation of the RecA Protein | High salt concentrations have also been shown to be able to elongate the RecA protein filament as well. Petukhov et al. demonstrated that a high concentration of NaCl increased the helical pitch from 7.8 to 8.6 nm.<ref name=Peukhov> Peukhov, M.; Lebedev, D.; Shalguev, V.; Islamov, A.; Kruklin, A.; Lanzov, V.; Isaev-Ivanov, V. Conformational Flexibility of RecA Protein Filament: Transitions between Compressed and Stretched States. Proteins: Struct.,Funct., Bioinf. 2006,65, 296-304. DOI: 10.1002/prot.21116 </ref> Thus, high salt concentrations appear to induce the active (stretched) form of RecA in the absence of DNA.<ref name=Peukhov> Peukhov, M.; Lebedev, D.; Shalguev, V.; Islamov, A.; Kruklin, A.; Lanzov, V.; Isaev-Ivanov, V. Conformational Flexibility of RecA Protein Filament: Transitions between Compressed and Stretched States. Proteins: Struct.,Funct., Bioinf. 2006,65, 296-304. DOI: 10.1002/prot.21116 </ref> Other studies have found that the free Magnesium ion binds to RecA (see <scene name='41/413118/Reca_adp_mg/3'>binding sites</scene>; Mg ion is colored lime green) and extends the filament more than 150% compared to the filament when DNA is bound.<ref name=Lusetti> Lusetti, S. L.; Shaw, J. J.; Cox, M. M. Magnesium Ion-dependent Activation of the RecA Protein | ||
Involves the C Terminus. J. Biol. Chem. 2003, 278, 16381–16388. DOI: 10.1074/jbc.M212916200 </ref> Moreover, although normally RecA requires DNA to hydrolyze ATP, high salt concentrations are able to stimulate ATP hydrolysis in the absence of DNA.<ref name=Pugh> Pugh, B. F.; Cox, M. M. High Salt Activation of recA Protein ATPase in the Absence of DNA. J. Biol. Chem.1988, 263, 76-83. PMID: 2826451 </ref> Brenner and Zlotnick reported that the presence of monovalent salts changed the distribution of RecA aggregation states and that the more aggregated structures corresponded to higher protein concentration.<ref name=Brenner> Brenner, S. L.; Zlotnick, A. RecA Protein Self-assembly: Multiple Discrete Aggregation States. J. Mol. Biol. 1988, 204, 959-972. DOI: 10.1016/0022-2836(88)90055-1 </ref> Previous studies have shown that various Hofmeister salts affect the secondary structure, stability, and aggregation behavior of RecA differently.<ref name=Brenner> Brenner, S. L.; Zlotnick, A. RecA Protein Self-assembly: Multiple Discrete Aggregation States. J. Mol. Biol. 1988, 204, 959-972. DOI: 10.1016/0022-2836(88)90055-1 </ref> <ref name=Cannon> Cannon, W. R.; Talley, N. D.; Danzig, B. A.; Liu, X. L.; Martinez, J. S.; Shreve, A. P.; MacDonald, G. Ion specific influences on the stability and unfolding transitions of a naturally aggregating protein; RecA. Biophys. Chem. 2012, 163-164, 56-63. DOI: 10.1016/j.bpc.2012.02.005 </ref> Additionally, RecA has been demonstrated to follow the inverse-anionic Hofmeister series and the presence of some ions promotes nonspecific aggregation.<ref name=Cannon> Cannon, W. R.; Talley, N. D.; Danzig, B. A.; Liu, X. L.; Martinez, J. S.; Shreve, A. P.; MacDonald, G. Ion specific influences on the stability and unfolding transitions of a naturally aggregating protein; RecA. Biophys. Chem. 2012, 163-164, 56-63. DOI: 10.1016/j.bpc.2012.02.005 </ref> | Involves the C Terminus. J. Biol. Chem. 2003, 278, 16381–16388. DOI: 10.1074/jbc.M212916200 </ref> Moreover, although normally RecA requires DNA to hydrolyze ATP, high salt concentrations are able to stimulate ATP hydrolysis in the absence of DNA.<ref name=Pugh> Pugh, B. F.; Cox, M. M. High Salt Activation of recA Protein ATPase in the Absence of DNA. J. Biol. Chem.1988, 263, 76-83. PMID: 2826451 </ref> Brenner and Zlotnick reported that the presence of monovalent salts changed the distribution of RecA aggregation states and that the more aggregated structures corresponded to higher protein concentration.<ref name=Brenner> Brenner, S. L.; Zlotnick, A. RecA Protein Self-assembly: Multiple Discrete Aggregation States. J. Mol. Biol. 1988, 204, 959-972. DOI: 10.1016/0022-2836(88)90055-1 </ref> Previous studies have shown that various Hofmeister salts affect the secondary structure, stability, and aggregation behavior of RecA differently.<ref name=Brenner> Brenner, S. L.; Zlotnick, A. RecA Protein Self-assembly: Multiple Discrete Aggregation States. J. Mol. Biol. 1988, 204, 959-972. DOI: 10.1016/0022-2836(88)90055-1 </ref> <ref name=Cannon> Cannon, W. R.; Talley, N. D.; Danzig, B. A.; Liu, X. L.; Martinez, J. S.; Shreve, A. P.; MacDonald, G. Ion specific influences on the stability and unfolding transitions of a naturally aggregating protein; RecA. Biophys. Chem. 2012, 163-164, 56-63. DOI: 10.1016/j.bpc.2012.02.005 </ref> Additionally, RecA has been demonstrated to follow the inverse-anionic Hofmeister series and the presence of some ions promotes nonspecific aggregation.<ref name=Cannon> Cannon, W. R.; Talley, N. D.; Danzig, B. A.; Liu, X. L.; Martinez, J. S.; Shreve, A. P.; MacDonald, G. Ion specific influences on the stability and unfolding transitions of a naturally aggregating protein; RecA. Biophys. Chem. 2012, 163-164, 56-63. DOI: 10.1016/j.bpc.2012.02.005 </ref> | ||
==3D structures of recombinase A== | |||
[[3D structures of recombinase A]] | |||
</StructureSection> | </StructureSection> | ||
== References == | == References == | ||
<references/> | <references/> | ||
[[Category:Topic Page]] | [[Category:Topic Page]] |