3uun: Difference between revisions
No edit summary |
No edit summary |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
==Crystal Structure of N-terminal first spectrin repeat of dystrophin== | ==Crystal Structure of N-terminal first spectrin repeat of dystrophin== | ||
<StructureSection load='3uun' size='340' side='right' caption='[[3uun]], [[Resolution|resolution]] 2.30Å' scene=''> | <StructureSection load='3uun' size='340' side='right'caption='[[3uun]], [[Resolution|resolution]] 2.30Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[3uun]] is a 2 chain structure with sequence from [ | <table><tr><td colspan='2'>[[3uun]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3UUN OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3UUN FirstGlance]. <br> | ||
</td></tr><tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">DMD ([ | </td></tr><tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">DMD ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3uun FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3uun OCA], [https://pdbe.org/3uun PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3uun RCSB], [https://www.ebi.ac.uk/pdbsum/3uun PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3uun ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Disease == | == Disease == | ||
[[ | [[https://www.uniprot.org/uniprot/DMD_HUMAN DMD_HUMAN]] Defects in DMD are the cause of Duchenne muscular dystrophy (DMD) [MIM:[https://omim.org/entry/310200 310200]]. DMD is the most common form of muscular dystrophy; a sex-linked recessive disorder. It typically presents in boys aged 3 to 7 year as proximal muscle weakness causing waddling gait, toe-walking, lordosis, frequent falls, and difficulty in standing up and climbing up stairs. The pelvic girdle is affected first, then the shoulder girdle. Progression is steady and most patients are confined to a wheelchair by age of 10 or 12. Flexion contractures and scoliosis ultimately occur. About 50% of patients have a lower IQ than their genetic expectations would suggest. There is no treatment.<ref>PMID:8401582</ref> <ref>PMID:7981690</ref> <ref>PMID:8817332</ref> <ref>PMID:9851445</ref> Defects in DMD are the cause of Becker muscular dystrophy (BMD) [MIM:[https://omim.org/entry/300376 300376]]. BMD resembles DMD in hereditary and clinical features but is later in onset and more benign.<ref>PMID:10573008</ref> Defects in DMD are a cause of cardiomyopathy dilated X-linked type 3B (CMD3B) [MIM:[https://omim.org/entry/302045 302045]]; also known as X-linked dilated cardiomyopathy (XLCM). Dilated cardiomyopathy is a disorder characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia. Patients are at risk of premature death.<ref>PMID:9170407</ref> <ref>PMID:12354438</ref> <ref>PMID:12359139</ref> | ||
== Function == | == Function == | ||
[[ | [[https://www.uniprot.org/uniprot/DMD_HUMAN DMD_HUMAN]] Anchors the extracellular matrix to the cytoskeleton via F-actin. Ligand for dystroglycan. Component of the dystrophin-associated glycoprotein complex which accumulates at the neuromuscular junction (NMJ) and at a variety of synapses in the peripheral and central nervous systems and has a structural function in stabilizing the sarcolemma. Also implicated in signaling events and synaptic transmission.<ref>PMID:16710609</ref> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Line 20: | Line 20: | ||
</div> | </div> | ||
<div class="pdbe-citations 3uun" style="background-color:#fffaf0;"></div> | <div class="pdbe-citations 3uun" style="background-color:#fffaf0;"></div> | ||
==See Also== | |||
*[[Dystrophin|Dystrophin]] | |||
== References == | == References == | ||
<references/> | <references/> | ||
Line 25: | Line 28: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Human]] | [[Category: Human]] | ||
[[Category: Large Structures]] | |||
[[Category: Muthu, M]] | [[Category: Muthu, M]] | ||
[[Category: Richardson, K A]] | [[Category: Richardson, K A]] |
Latest revision as of 11:08, 20 July 2022
Crystal Structure of N-terminal first spectrin repeat of dystrophinCrystal Structure of N-terminal first spectrin repeat of dystrophin
Structural highlights
Disease[DMD_HUMAN] Defects in DMD are the cause of Duchenne muscular dystrophy (DMD) [MIM:310200]. DMD is the most common form of muscular dystrophy; a sex-linked recessive disorder. It typically presents in boys aged 3 to 7 year as proximal muscle weakness causing waddling gait, toe-walking, lordosis, frequent falls, and difficulty in standing up and climbing up stairs. The pelvic girdle is affected first, then the shoulder girdle. Progression is steady and most patients are confined to a wheelchair by age of 10 or 12. Flexion contractures and scoliosis ultimately occur. About 50% of patients have a lower IQ than their genetic expectations would suggest. There is no treatment.[1] [2] [3] [4] Defects in DMD are the cause of Becker muscular dystrophy (BMD) [MIM:300376]. BMD resembles DMD in hereditary and clinical features but is later in onset and more benign.[5] Defects in DMD are a cause of cardiomyopathy dilated X-linked type 3B (CMD3B) [MIM:302045]; also known as X-linked dilated cardiomyopathy (XLCM). Dilated cardiomyopathy is a disorder characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia. Patients are at risk of premature death.[6] [7] [8] Function[DMD_HUMAN] Anchors the extracellular matrix to the cytoskeleton via F-actin. Ligand for dystroglycan. Component of the dystrophin-associated glycoprotein complex which accumulates at the neuromuscular junction (NMJ) and at a variety of synapses in the peripheral and central nervous systems and has a structural function in stabilizing the sarcolemma. Also implicated in signaling events and synaptic transmission.[9] Publication Abstract from PubMedDystrophin and utrophin link the F-actin cytoskeleton to the cell membrane via an associated glycoprotein complex. This functionality results from their domain organization having an N-terminal actin-binding domain followed by multiple spectrin-repeat domains and then C-terminal protein-binding motifs. Therapeutic strategies to replace defective dystrophin with utrophin in patients with Duchenne muscular dystrophy require full-characterization of both these proteins to assess their degree of structural and functional equivalence. Here the high resolution structures of the first spectrin repeats (N-terminal repeat 1) from both dystrophin and utrophin have been determined by x-ray crystallography. The repeat structures both display a three-helix bundle fold very similar to one another and to homologous domains from spectrin, alpha-actinin and plectin. The utrophin and dystrophin repeat structures reveal the relationship between the structural domain and the canonical spectrin repeat domain sequence motif, showing the compact structural domain of spectrin repeat one to be extended at the C-terminus relative to its previously defined sequence repeat. These structures explain previous in vitro biochemical studies in which extending dystrophin spectrin repeat domain length leads to increased protein stability. Furthermore we show that the first dystrophin and utrophin spectrin repeats have no affinity for F-actin in the absence of other domains. The crystal structures of dystrophin and utrophin spectrin repeats: implications for domain boundaries.,Muthu M, Richardson KA, Sutherland-Smith AJ PLoS One. 2012;7(7):e40066. Epub 2012 Jul 20. PMID:22911693[10] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|