2pxt: Difference between revisions
No edit summary |
No edit summary |
||
(10 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Variant 15 of Ribonucleoprotein Core of the E. Coli Signal Recognition Particle== | |||
<StructureSection load='2pxt' size='340' side='right'caption='[[2pxt]], [[Resolution|resolution]] 2.50Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[2pxt]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2PXT OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2PXT FirstGlance]. <br> | |||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=NCO:COBALT+HEXAMMINE(III)'>NCO</scene></td></tr> | |||
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> | |||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1dul|1dul]]</div></td></tr> | |||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">ffh ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 "Bacillus coli" Migula 1895])</td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2pxt FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2pxt OCA], [https://pdbe.org/2pxt PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2pxt RCSB], [https://www.ebi.ac.uk/pdbsum/2pxt PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2pxt ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[[https://www.uniprot.org/uniprot/SRP54_ECOLI SRP54_ECOLI]] Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Binds to the hydrophobic signal sequence of the ribosome-nascent chain (RNC) as it emerges from the ribosomes. The SRP-RNC complex is then targeted to the cytoplasmic membrane where it interacts with the SRP receptor FtsY. Interaction with FtsY leads to the transfer of the RNC complex to the Sec translocase for insertion into the membrane, the hydrolysis of GTP by both Ffh and FtsY, and the dissociation of the SRP-FtsY complex into the individual components.<ref>PMID:2171778</ref> <ref>PMID:1279430</ref> <ref>PMID:1331806</ref> <ref>PMID:9305630</ref> <ref>PMID:11735405</ref> <ref>PMID:11741850</ref> <ref>PMID:15140892</ref> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/px/2pxt_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2pxt ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
X-ray crystallography of biologically important RNA molecules has been hampered by technical challenges, including finding heavy-atom derivatives to obtain high-quality experimental phase information. Existing techniques have drawbacks, limiting the rate at which important new structures are solved. To address this, we have developed a reliable means to localize heavy atoms specifically to virtually any RNA. By solving the crystal structures of thirteen variants of the G*U wobble pair cation binding motif, we have identified a version that when inserted into an RNA helix introduces a high-occupancy cation binding site suitable for phasing. This "directed soaking" strategy can be integrated fully into existing RNA crystallography methods, potentially increasing the rate at which important structures are solved and facilitating routine solving of structures using Cu-Kalpha radiation. This method already has been used to solve several crystal structures. | |||
A general strategy to solve the phase problem in RNA crystallography.,Keel AY, Rambo RP, Batey RT, Kieft JS Structure. 2007 Jul;15(7):761-72. PMID:17637337<ref>PMID:17637337</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 2pxt" style="background-color:#fffaf0;"></div> | |||
== | ==See Also== | ||
*[[Signal recognition particle protein|Signal recognition particle protein]] | |||
[[Category: | == References == | ||
[[Category: | <references/> | ||
[[Category: Batey, R T | __TOC__ | ||
[[Category: Keel, A Y | </StructureSection> | ||
[[Category: Kieft, J S | [[Category: Bacillus coli migula 1895]] | ||
[[Category: Rambo, R P | [[Category: Large Structures]] | ||
[[Category: Batey, R T]] | |||
[[Category: Keel, A Y]] | |||
[[Category: Kieft, J S]] | |||
[[Category: Rambo, R P]] | |||
[[Category: Cation binding]] | [[Category: Cation binding]] | ||
[[Category: Gu pair]] | [[Category: Gu pair]] | ||
Line 31: | Line 49: | ||
[[Category: Rna]] | [[Category: Rna]] | ||
[[Category: Rna phasing]] | [[Category: Rna phasing]] | ||
[[Category: Signaling protein | [[Category: Signaling protein-rna complex]] | ||
Latest revision as of 18:35, 17 June 2021
Variant 15 of Ribonucleoprotein Core of the E. Coli Signal Recognition ParticleVariant 15 of Ribonucleoprotein Core of the E. Coli Signal Recognition Particle
Structural highlights
Function[SRP54_ECOLI] Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Binds to the hydrophobic signal sequence of the ribosome-nascent chain (RNC) as it emerges from the ribosomes. The SRP-RNC complex is then targeted to the cytoplasmic membrane where it interacts with the SRP receptor FtsY. Interaction with FtsY leads to the transfer of the RNC complex to the Sec translocase for insertion into the membrane, the hydrolysis of GTP by both Ffh and FtsY, and the dissociation of the SRP-FtsY complex into the individual components.[1] [2] [3] [4] [5] [6] [7] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedX-ray crystallography of biologically important RNA molecules has been hampered by technical challenges, including finding heavy-atom derivatives to obtain high-quality experimental phase information. Existing techniques have drawbacks, limiting the rate at which important new structures are solved. To address this, we have developed a reliable means to localize heavy atoms specifically to virtually any RNA. By solving the crystal structures of thirteen variants of the G*U wobble pair cation binding motif, we have identified a version that when inserted into an RNA helix introduces a high-occupancy cation binding site suitable for phasing. This "directed soaking" strategy can be integrated fully into existing RNA crystallography methods, potentially increasing the rate at which important structures are solved and facilitating routine solving of structures using Cu-Kalpha radiation. This method already has been used to solve several crystal structures. A general strategy to solve the phase problem in RNA crystallography.,Keel AY, Rambo RP, Batey RT, Kieft JS Structure. 2007 Jul;15(7):761-72. PMID:17637337[8] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|