SARS-CoV-2 enzyme Hel: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
Michal Harel (talk | contribs)
No edit summary
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
<SX viewer='molstar' load='6zsl' size='340' side='right' caption='Crystal structure of the SARS-CoV-2 helicase at 1.94 Angstrom resolution (PDB 6ZSL).' scene=''>
<SX viewer='molstar' load='6zsl' size='340' side='right' caption='Crystal structure of the SARS-CoV-2 helicase at 1.94 Angstrom resolution (PDB 6zsl).' scene=''>
'''Non-structural protein 13 (nsp13)/ Helicase (Hel)'''
'''Non-structural protein 13 (nsp13)/ Helicase (Hel)'''


Line 16: Line 16:


Nsp13 comprises of five domains: The N-terminal Zinc binding domain (ZBD) (amino acids 1-100), the stalk domain (101-150), 1B (151-261), 1A (262-442), and the 2A domain (443-601). The last three have been shown to be responsible for nucleic acid binding and the NTPase activity, while the ZBD and 1A can directly interact with nsp12 to enhance the helicase activity of nsp13. Together they fold in a triangular shape with 1A, 1B and 2A forming the base and the stalk domain and ZBD at the apex<ref name="Romano"/>. Nsp13 might form a stable holo-RdRp complex with [[SARS-CoV-2 enzyme RdRp|nsp12]], [[SARS-CoV-2 protein NSP7|nsp7]] and [[SARS-CoV-2 protein NSP8|nsp8]] by interacting with the nsp8 extensions and the nsp12 thumb domain and may play a role in backtracking<ref name="Chen"/>.
Nsp13 comprises of five domains: The N-terminal Zinc binding domain (ZBD) (amino acids 1-100), the stalk domain (101-150), 1B (151-261), 1A (262-442), and the 2A domain (443-601). The last three have been shown to be responsible for nucleic acid binding and the NTPase activity, while the ZBD and 1A can directly interact with nsp12 to enhance the helicase activity of nsp13. Together they fold in a triangular shape with 1A, 1B and 2A forming the base and the stalk domain and ZBD at the apex<ref name="Romano"/>. Nsp13 might form a stable holo-RdRp complex with [[SARS-CoV-2 enzyme RdRp|nsp12]], [[SARS-CoV-2 protein NSP7|nsp7]] and [[SARS-CoV-2 protein NSP8|nsp8]] by interacting with the nsp8 extensions and the nsp12 thumb domain and may play a role in backtracking<ref name="Chen"/>.


== See also ==
== See also ==

Latest revision as of 11:38, 17 February 2021

Crystal structure of the SARS-CoV-2 helicase at 1.94 Angstrom resolution (PDB 6zsl).

ReferencesReferences

  1. 1.0 1.1 Yoshimoto FK. The Proteins of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2 or n-COV19), the Cause of COVID-19. Protein J. 2020 Jun;39(3):198-216. doi: 10.1007/s10930-020-09901-4. PMID:32447571 doi:http://dx.doi.org/10.1007/s10930-020-09901-4
  2. Konkolova E, Klima M, Nencka R, Boura E. Structural analysis of the putative SARS-CoV-2 primase complex. J Struct Biol. 2020 Aug 1;211(2):107548. doi: 10.1016/j.jsb.2020.107548. Epub, 2020 Jun 11. PMID:32535228 doi:http://dx.doi.org/10.1016/j.jsb.2020.107548
  3. 3.0 3.1 3.2 Chen J, Malone B, Llewellyn E, Grasso M, Shelton PMM, Olinares PDB, Maruthi K, Eng ET, Vatandaslar H, Chait BT, Kapoor TM, Darst SA, Campbell EA. Structural Basis for Helicase-Polymerase Coupling in the SARS-CoV-2 Replication-Transcription Complex. Cell. 2020 Jul 28. pii: S0092-8674(20)30941-7. doi: 10.1016/j.cell.2020.07.033. PMID:32783916 doi:http://dx.doi.org/10.1016/j.cell.2020.07.033
  4. 4.0 4.1 4.2 4.3 4.4 4.5 4.6 Romano M, Ruggiero A, Squeglia F, Maga G, Berisio R. A Structural View of SARS-CoV-2 RNA Replication Machinery: RNA Synthesis, Proofreading and Final Capping. Cells. 2020 May 20;9(5). pii: cells9051267. doi: 10.3390/cells9051267. PMID:32443810 doi:http://dx.doi.org/10.3390/cells9051267
  5. Krafcikova P, Silhan J, Nencka R, Boura E. Structural analysis of the SARS-CoV-2 methyltransferase complex involved in RNA cap creation bound to sinefungin. Nat Commun. 2020 Jul 24;11(1):3717. doi: 10.1038/s41467-020-17495-9. PMID:32709887 doi:http://dx.doi.org/10.1038/s41467-020-17495-9
  6. Yuen CK, Lam JY, Wong WM, Mak LF, Wang X, Chu H, Cai JP, Jin DY, To KK, Chan JF, Yuen KY, Kok KH. SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists. Emerg Microbes Infect. 2020 Dec;9(1):1418-1428. doi:, 10.1080/22221751.2020.1780953. PMID:32529952 doi:http://dx.doi.org/10.1080/22221751.2020.1780953

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

Jaime Prilusky, Lea C. von Soosten, Michal Harel