Hexoses: Difference between revisions

No edit summary
Karsten Theis (talk | contribs)
No edit summary
 
(27 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<StructureSection load='' size='450' side='right' scene='Hexoses/Glucose_fischer/3' caption=''>
The objective of this article is to illustrate and visualize the structures and concepts of glucose (aldohexose<ref>[http://en.wikipedia.org/wiki/Aldohexose Aldohexose]</ref>) and fructose (ketohexose<ref>[http://en.wikipedia.org/wiki/Ketohexose Ketohexose]</ref>) that are difficult to visualize and illustrate by viewing two dimensional structures in textbooks.
The objective of this article is to illustrate and visualize the structures and concepts of glucose (aldohexose<ref>[http://en.wikipedia.org/wiki/Aldohexose Aldohexose]</ref>) and fructose (ketohexose<ref>[http://en.wikipedia.org/wiki/Ketohexose Ketohexose]</ref>) that are difficult to visualize and illustrate by viewing two dimensional structures in textbooks.


== Glucose ==
== Glucose ==
[[Image:D-glucose (fischer).png|thumb|left|Fischer Projection Structure of D-Glucose.]]
[[Image:D-glucose (fischer).png|thumb|left|Fischer Projection Structure of D-Glucose.]]
<table width='500' align='right' cellpadding='5'><tr><td rowspan='2'>&nbsp;</td><td bgcolor='#eeeeee'><Structure load='Glucose Fischer3.pdb' size='490' frame='true' align='right' caption='' scene='Hexoses/Glucose_fischer/3' /></td></tr><tr><td bgcolor='#eeeeee'><center><scene name='Hexoses/Glucose_fischer/3'> (Initial scene)</scene></center></td></tr></table>
The figure to the left contains D-glucose drawn as a [[Fischer projection]] structure. When drawing a Fischer projection the most oxidized group, in this case the aldehyde group, is positioned at the top, all horizontal bonds project to the front of the plane of the screen and all vertical bonds project behind the plane of the screen.  The structure shown to the right in the Jmol applet is drawn in this same conformation, but the structure gives the appearance of being 3D. The applet shows the glucose molecule circling back on itself, so that carbon #6, C-6, (green) circles around to meet the aldehyde carbon, C-1 (orange). Projecting this 3D structure on to a 2D surface gives the Fischer projection structure. In order to observe that the hydroxyl groups on the chiral<ref>[http://en.wikipedia.org/wiki/Chiral_centre Chiral center]</ref> carbons project to the same sides of the carbon chain on the two structures, rotate the Jmol structure upward so that C-1 moves to the back of the screen. When you do that, you will see that the hydroxyl groups on the chiral carbons are on the same sides of the carbon chain as they are in the 2D structure. Compare the structure of the common <scene name='Hexoses/Glucose_sawtooth/1'>saw-tooth conformation</scene> of D-glucose to that of the Fischer projection structure. Toggle off the spin and rotate the molecule so that the hydroxyl group on C-5 is on the right side of the carbon chain. Now, notice the differences in the orientations of the hydroxyl groups on the chiral carbons in the sawtooth conformation compared to those in the Fischer projection. This comparison shows that the saw-tooth conformation can not be used to make the enantiomeric<ref>[http://en.wikipedia.org/wiki/Enantiomer Enantiomer]</ref> assignment.


The figure to the left contains D-glucose drawn as a Fischer projection structure. When drawing a Fischer projection the most oxidized group, in this case the aldehyde group, is positioned at the top, all horizontal bonds project to the front of the plane of the screen and all vertical bonds project behind the plane of the screen.  The structure shown to the right in the Jmol applet is drawn in this same conformation, but the structure gives the appearance of being 3D. The applet shows the glucose molecule circling back on itself, so that carbon #6 (green) circles around to meet the aldehyde carbon, C#1 (orange). Projecting this 3D structure on to a 2D surface gives the Fischer projection structure. In order to observe that the hydroxyl groups on the chiral carbons project to the same sides on the two structures, rotate the Jmol structure upward so that C#1 moves to the back of the screen. When you do that, you will see that the hydroxyl groups on the chiral<ref>[http://en.wikipedia.org/wiki/Chiral_centre Chiral center]</ref> carbons are on the same sides of the carbon chain as they are in the 2D structure. Compare the structure of the common <scene name='Hexoses/Glucose_sawtooth/1'>saw-tooth conformation</scene> of D-glucose to that of the Fischer projection structure. Toggle off the spin and rotate the molecule so that the hydroxyl group on C#5 is on the right side of the carbon chain. Now, notice the differences in the orientations of the hydroxyl groups on the chiral carbons in the sawtooth conformation compared to those in the Fischer projection. This comparison shows that the saw-tooth conformation can not be used to make the enantiomeric<ref>[http://en.wikipedia.org/wiki/Enantiomer Enantiomer]</ref> assignment.
D-glucose in a <scene name='Hexoses/Glucose_preanomer/4'>conformation</scene> which positions the aldehyde carbon (yellow) so that it can react with the oxygen (green) bonded to C-5 to form a hemiacetal<ref>[http://en.wikipedia.org/wiki/Hemiacetal Hemiacetal]</ref> A result of this reaction is that C-1 becomes chiral, and one of two possible stereoisomers (anomers<ref>[http://en.wikipedia.org/wiki/Anomer Anomer]</ref>) is formed. One anomer, <scene name='Hexoses/Alpha_glucose/1'>α-D-glucopyranose</scene> <ref>[http://en.wikipedia.org/wiki/Pyranose Pyranose]</ref> is shown from the perspective of looking on the edge of the structure. This perspective or the Haworth<ref>[http://en.wikipedia.org/wiki/Pyranose#History Haworth projection]</ref> projection is often shown in text books. The anomeric<ref>[http://en.wikipedia.org/wiki/Anomer#Nomenclature Anomeric center]</ref> carbon, C-1 colored orange, is shown on the right side of the structure, its hydroxyl group is projecting down and C-6, not being in the ring, projects up. Notice that, unlike the Haworth projection, the pyranose ring is not planear. The other anomer, <scene name='Hexoses/Beta_glucose/2'>β-D-glucopyranose</scene> is shown, its structure so that it is positioned similar to α-D-glucopyranose - viewing the front edge of the ring, anomeric carbon is on the right and C-6 projects up. What is the one, and only one, difference in the 3D structures of these two molecules?
== Fructose ==
The applet on the right shows <scene name='Hexoses/Open_fructose/3'>D-fructose</scene> in a conformation in which the oxygen of C-5 is in position to react with C-2, the carbonyl carbon, forming a hemiketal<ref>[http://en.wikipedia.org/wiki/Hemiacetal Hemiketal]</ref>. As in the case of glucose forming a hemiacetal, the carbonyl carbon becomes a chiral carbon and an anomeric carbon. The two possible anomers are called <scene name='Hexoses/Alpha_fructose/3'>α-D-fructofuranose</scene> <ref>[http://en.wikipedia.org/wiki/Furanose Furanose]</ref> and <scene name='Hexoses/Beta_fructose/2'>β-D- fructofuranose</scene>.  
The α anomer is shown with an edge-on-view, with the anomeric carbon (C-2) on the right side of the structure and with its hydroxyl group projecting down. C-1 is not part of the five membered ring and projects above the ring. 


D-glucose in a <scene name='Hexoses/Glucose_preanomer/1'>conformation</scene> which positions the aldehyde carbon so that it can react with the oxygen bonded to C#5 to form a hemiacetal<ref>[http://en.wikipedia.org/wiki/Hemiacetal Hemiacetal]</ref> A result of this reaction is that C#1 becomes chiral, and two stereoisomers (anomers<ref>[http://en.wikipedia.org/wiki/Anomer Anomer]</ref>) are formed. One anomer, α-D-glucopyranose in the right applet below, is shown from the perspective of looking on the edge of the Haworth structure. This is the perspective that is often shown in text books, and the anomeric carbon, C#1 with the blue halo, is shown on the right side of the structure. Notice that the pyranose ring is not planear and that in the α configuration the hydroxyl group of the anomeric carbon is projecting below the pyranose ring.
</StructureSection>
<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>select all; label "%[chirality]";
  background label [xffff00];</scriptWhenChecked>
    <scriptWhenUnchecked>select all; label off</scriptWhenUnchecked>
    <checked>false</checked>  
    <text>R/S labels</text>
  </jmolCheckbox>
</jmol>


{{clear}}
<Structure load='Alpha glucose.pdb' size='350' frame='true' align='left' caption='Insert caption here' scene='Hexoses/Alpha_glucose/1' />
== Terms Defined in Wikipedia ==
== Terms Defined in Wikipedia ==
   {{Reflist}}
   {{Reflist}}
== Other Carbohydrate Pages ==
* [[Disaccharides]]
* [[Polysaccharides]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

Karl Oberholser, Alexander Berchansky, Karsten Theis