6tjv: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
m Protected "6tjv" [edit=sysop:move=sysop]
No edit summary
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''Unreleased structure'''


The entry 6tjv is ON HOLD  until sometime in the future
==Structure of the NDH-1MS complex from Thermosynechococcus elongatus==
<SX load='6tjv' size='340' side='right' viewer='molstar' caption='[[6tjv]], [[Resolution|resolution]] 3.20&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[6tjv]] is a 18 chain structure with sequence from [http://en.wikipedia.org/wiki/Thermosynechococcus_elongatus_(strain_bp-1) Thermosynechococcus elongatus (strain bp-1)]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6TJV OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6TJV FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BCR:BETA-CAROTENE'>BCR</scene>, <scene name='pdbligand=CLA:CHLOROPHYLL+A'>CLA</scene>, <scene name='pdbligand=DGD:DIGALACTOSYL+DIACYL+GLYCEROL+(DGDG)'>DGD</scene>, <scene name='pdbligand=PGT:(1S)-2-{[{[(2R)-2,3-DIHYDROXYPROPYL]OXY}(HYDROXY)PHOSPHORYL]OXY}-1-[(PALMITOYLOXY)METHYL]ETHYL+STEARATE'>PGT</scene>, <scene name='pdbligand=SF4:IRON/SULFUR+CLUSTER'>SF4</scene>, <scene name='pdbligand=SQD:1,2-DI-O-ACYL-3-O-[6-DEOXY-6-SULFO-ALPHA-D-GLUCOPYRANOSYL]-SN-GLYCEROL'>SQD</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6tjv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6tjv OCA], [http://pdbe.org/6tjv PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6tjv RCSB], [http://www.ebi.ac.uk/pdbsum/6tjv PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6tjv ProSAT]</span></td></tr>
</table>
== Function ==
[[http://www.uniprot.org/uniprot/NDHK_THEEB NDHK_THEEB]] NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. [[http://www.uniprot.org/uniprot/NU3C_THEEB NU3C_THEEB]] NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration (By similarity). [[http://www.uniprot.org/uniprot/Q8DL30_THEEB Q8DL30_THEEB]] NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient.[RuleBase:RU004429] [[http://www.uniprot.org/uniprot/NDHI_THEEB NDHI_THEEB]] NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. [[http://www.uniprot.org/uniprot/NU2C_THEEB NU2C_THEEB]] NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. [[http://www.uniprot.org/uniprot/NDHL_THEEB NDHL_THEEB]] NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration (By similarity). [[http://www.uniprot.org/uniprot/NDHO_THEEB NDHO_THEEB]] NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration (By similarity). [[http://www.uniprot.org/uniprot/NDHN_THEEB NDHN_THEEB]] NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration (By similarity). [[http://www.uniprot.org/uniprot/NDHH_THEEB NDHH_THEEB]] NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. [[http://www.uniprot.org/uniprot/NU1C_THEEB NU1C_THEEB]] NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient.[HAMAP-Rule:MF_01350] [[http://www.uniprot.org/uniprot/NDHJ_THEEB NDHJ_THEEB]] NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. [[http://www.uniprot.org/uniprot/NDHM_THEEB NDHM_THEEB]] NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration (By similarity). [[http://www.uniprot.org/uniprot/Q8DL29_THEEB Q8DL29_THEEB]] NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration.[HAMAP-Rule:MF_01456]
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Photosynthetic organisms capture light energy to drive their energy metabolism, and employ the chemical reducing power to convert carbon dioxide (CO2) into organic molecules. Photorespiration, however, significantly reduces the photosynthetic yields. To survive under low CO2 concentrations, cyanobacteria evolved unique carbon-concentration mechanisms that enhance the efficiency of photosynthetic CO2 fixation, for which the molecular principles have remained unknown. We show here how modular adaptations enabled the cyanobacterial photosynthetic complex I to concentrate CO2 using a redox-driven proton-pumping machinery. Our cryo-electron microscopy structure at 3.2 A resolution shows a catalytic carbonic anhydrase module that harbours a Zn(2+) active site, with connectivity to proton-pumping subunits that are activated by electron transfer from photosystem I. Our findings illustrate molecular principles in the photosynthetic complex I machinery that enabled cyanobacteria to survive in drastically changing CO2 conditions.


Authors:  
Redox-coupled proton pumping drives carbon concentration in the photosynthetic complex I.,Schuller JM, Saura P, Thiemann J, Schuller SK, Gamiz-Hernandez AP, Kurisu G, Nowaczyk MM, Kaila VRI Nat Commun. 2020 Jan 24;11(1):494. doi: 10.1038/s41467-020-14347-4. PMID:31980611<ref>PMID:31980611</ref>


Description:  
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
[[Category: Unreleased Structures]]
</div>
<div class="pdbe-citations 6tjv" style="background-color:#fffaf0;"></div>
== References ==
<references/>
__TOC__
</SX>
[[Category: Large Structures]]
[[Category: Gamiz-Hernandez, A P]]
[[Category: Kaila, V R.I]]
[[Category: Kurisu, G]]
[[Category: Nowaczyk, M M]]
[[Category: Saura, P]]
[[Category: Schuller, J M]]
[[Category: Schuller, S K]]
[[Category: Thiemann, J]]
[[Category: Carbon concentrating photosynthetic complex i]]
[[Category: Membrane protein]]
[[Category: Proton pump]]

Latest revision as of 09:31, 11 April 2020

Structure of the NDH-1MS complex from Thermosynechococcus elongatusStructure of the NDH-1MS complex from Thermosynechococcus elongatus

6tjv, resolution 3.20Å

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA