Helices in Proteins: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
Eric Martz (talk | contribs)
Angel Herraez (talk | contribs)
m basic link at the top of list; add mention of Spanish
 
(28 intermediate revisions by 4 users not shown)
Line 2: Line 2:
This page illustrates the 3 most common helical conformations (among [[Secondary structure|secondary structures]]) found in proteins.
This page illustrates the 3 most common helical conformations (among [[Secondary structure|secondary structures]]) found in proteins.


Each of the three examples below is a decapeptide fragment extracted from actual protein structures in the PDB. They are shown using the same scale, for a better comparison (as a consequence, zoom in the Jmol applets is disabled).
Each of the three examples below is a decapeptide fragment extracted from an actual protein structure in the [[PDB]]. They are shown using the same scale, for a better comparison (as a consequence, zoom in the Jmol applets is disabled).


<span style="font-size:150%; color:red;">
<span style="font-size:120%; color:red;">
<jmol>
<jmol>
   <jmolCheckbox>
   <jmolCheckbox>
     <target>all</target>
     <target>jmol_3</target>
     <scriptWhenChecked>set syncMouse on;set syncScript on;sync * on;</scriptWhenChecked>
     <scriptWhenChecked>script applet * @{"set syncMouse on; sync on;"};</scriptWhenChecked>
     <scriptWhenUnchecked>sync * off;</scriptWhenUnchecked>
     <scriptWhenUnchecked>script applet * @{"sync off;"};</scriptWhenUnchecked>
     <text>Synchronize the 3 models for rotation with your mouse.</text>
     <text>Synchronize the 3 models for rotation with your mouse.</text>
   </jmolCheckbox>
   </jmolCheckbox>
</jmol></span>
</jmol></span>
To re-align the 3 models, either reload this page or click on each of the 3 green 'Reset' links.


<table style="width:100%;">
<table style="width:100%;">
Line 23: Line 25:
</th>
</th>
</tr>
</tr>
<tr align="center">
<tr>
<td>
<td style="vertical-align:top;text-align:center;">
<applet load='3L79_514-525.pdb' size='260' scene='Helices_in_Proteins/3_10_helix_start/1'/>
<Structure name='jmol_3' load='3L79_514-525.pdb' size='260' scene='Helices_in_Proteins/3_10_helix_start/1' />
</td>
</td>
<td>
<td style="vertical-align:top;text-align:center;">
<applet load='1HHO_B_5-16.pdb' size='260' frame='false' scene='Helices_in_Proteins/Alpha_helix_start/1' />
<Structure name='jmol_a' load='1HHO_B_5-16.pdb' size='260' scene='Helices_in_Proteins/Alpha_helix_start/1' />
</td>
</td>
<td>
<td style="vertical-align:top;text-align:center;">
<applet load='2QD3_A_346-357.pdb' size='260' scene='Helices_in_Proteins/Pi_helix_start/3' />
<Structure name='jmol_p' load='2QD3_A_346-357.pdb' size='260' scene='Helices_in_Proteins/Pi_helix_start/3' />
</td>
</td>
</tr>
</tr>
<tr align="center">
<tr>
<td>
<td style="vertical-align:top;text-align:center;">
3<sub>10</sub>
<scene name='Helices_in_Proteins/3_10_helix_start/1' target='jmol_3'>Reset initial display for 3.10</scene>
<br />3 residues/turn
<br />3 residues/turn
<br />rise 0.20 nm/residue
<br />rise 0.20 nm/residue
Line 42: Line 44:
<br />H bonds: N<sub>i+3</sub> &#8594; O<sub>i</sub>
<br />H bonds: N<sub>i+3</sub> &#8594; O<sub>i</sub>
<br />φ = -49°, ψ = -26°
<br />φ = -49°, ψ = -26°
<br />[[3l79]]: 514-525
<br />from [[3l79]]: 514-525
</td>
</td>
<td>
<td style="vertical-align:top;text-align:center;">
3.6<sub>13</sub>
<scene name='Helices_in_Proteins/Alpha_helix_start/1' target='jmol_a'>Reset initial display for 3.6<sub>13</sub> (alpha)</scene>
<br />3.6 residues/turn
<br />3.6 residues/turn
<br />rise 0.15 nm/residue
<br />rise 0.15 nm/residue
Line 51: Line 53:
<br />H bonds: N<sub>i+4</sub> &#8594; O<sub>i</sub>
<br />H bonds: N<sub>i+4</sub> &#8594; O<sub>i</sub>
<br />φ = -60°, ψ = -45°
<br />φ = -60°, ψ = -45°
<br />1hho chain B: 5-16
<br />from [[1hho]] chain B: 5-16
</td>
</td>
<td>
<td style="vertical-align:top;text-align:center;">
4.4<sub>16</sub>
<scene name='Helices_in_Proteins/Pi_helix_start/3' target='jmol_p'>Reset initial display for 4.4<sub>16</sub> (pi)</scene>
<br />4.4 residues/turn
<br />4.4 residues/turn
<br />rise ~0.115 nm/residue
<br />rise ~0.115 nm/residue
Line 60: Line 62:
<br />H bonds: N<sub>i+5</sub> &#8594; O<sub>i</sub>
<br />H bonds: N<sub>i+5</sub> &#8594; O<sub>i</sub>
<br />φ = -55°, ψ = -70° (approx.)
<br />φ = -55°, ψ = -70° (approx.)
<br />[[2qd3]] chain A: 346-357
<br />from [[2qd3]] chain A: 346-357
</td>
</td>
</tr>
</tr>
Line 66: Line 68:
</table>
</table>


The alpha helix is by far the most common helix. Note that it is a right-handed helix when formed with the common L-amino acids<ref name="novotny">PMID: 15740737</ref><ref name="jourdan">PMID: 12910453</ref><ref name="moradi">PMID: 19923435</ref>. (It is left-handed when formed with D-amino acids<ref name="novotny" /><ref name="jourdan" /><ref name="moradi" />.) When viewed from either end, right-handed helices turn clockwise when followed away from you.
Change rendering:
<jmol>
  <jmolButton>
    <target>jmol_3</target>
    <script>script applet * @{"define temp selected;select not alpha;color bluetint;select protein;wireframe only;wireframe off;select backbone;cpk 23%;wireframe 0.15;select temp;"};</script>
    <text>backbone - ball and stick</text>
  </jmolButton>
  <jmolButton>
    <target>jmol_3</target>
    <script>script applet * @{"define temp selected;select not alpha;color bluetint;select protein;wireframe only;wireframe off;cpk 23%;wireframe 0.15;select temp;"};</script>
    <text>backbone and sidechains - ball and stick</text>
  </jmolButton>
  <jmolButton>
    <target>jmol_3</target>
    <script>script applet * @{"define temp selected;select not alpha;color bluetint;select protein;wireframe only;wireframe off;cpk 100%;select temp;"};</script>
    <text>spacefilling for all</text>
  </jmolButton>
  <jmolButton>
    <target>jmol_3</target>
    <script>script applet * @{"define temp selected;select protein;wireframe only;wireframe off;cartoon on;select alpha;cpk 23%;select temp;"};</script>
    <text>reset (cartoons)</text>
  </jmolButton>
</jmol>
 
 
The [[alpha helix]] is by far the most common helix. Note that it is a right-handed helix when formed with the common L-amino acids<ref name="novotny">PMID: 15740737</ref><ref name="jourdan">PMID: 12910453</ref><ref name="moradi">PMID: 19923435</ref>. (It is left-handed when formed with D-amino acids<ref name="novotny" /><ref name="jourdan" /><ref name="moradi" />.) When viewed from either end, right-handed helices turn clockwise when followed away from you.


==See Also==
==See Also==
*[[Basics of Protein Structure]]
*[[Alpha helix]]
*[http://chemapps.stolaf.edu/jmol/jsmol/helix.htm JSmol helix builder]
*[http://wiki.jmol.org/index.php/Recycling_Corner/Alpha_Helix_Generator RIBOZOME - an Alpha Helix Generator]
*[http://en.wikipedia.org/wiki/Alpha_helix Alpha helix] at Wikipedia.
*[http://en.wikipedia.org/wiki/Alpha_helix Alpha helix] at Wikipedia.
*[http://en.wikipedia.org/wiki/310_helix 3-10 helix] at Wikipedia.
*[http://en.wikipedia.org/wiki/Pi_helix Pi helix] at Wikipedia.
*[[Secondary structure]]
*[[Secondary structure]]
*[[Protein primary, secondary, tertiary and quaternary structure]] (slides for teaching)
*The same in Spanish: [[Protein primary, secondary, tertiary and quaternary structure (Spanish)|Estructuras primaria, secundaria, terciaria y cuaternaria de las proteínas]] (en formato de presentaci&oacute;n)


==References==
==References==
<references />
<references />

Latest revision as of 14:33, 3 February 2020

Helical conformations in proteinsHelical conformations in proteins

This page illustrates the 3 most common helical conformations (among secondary structures) found in proteins.

Each of the three examples below is a decapeptide fragment extracted from an actual protein structure in the PDB. They are shown using the same scale, for a better comparison (as a consequence, zoom in the Jmol applets is disabled).

To re-align the 3 models, either reload this page or click on each of the 3 green 'Reset' links.

310 helix alpha helix pi helix
Drag the structure with the mouse to rotate
Drag the structure with the mouse to rotate
Drag the structure with the mouse to rotate


3 residues/turn
rise 0.20 nm/residue
helix pitch 0.60 nm
H bonds: Ni+3 → Oi
φ = -49°, ψ = -26°
from 3l79: 514-525


3.6 residues/turn
rise 0.15 nm/residue
helix pitch 0.54 nm
H bonds: Ni+4 → Oi
φ = -60°, ψ = -45°
from 1hho chain B: 5-16


4.4 residues/turn
rise ~0.115 nm/residue
helix pitch ~0.41 nm
H bonds: Ni+5 → Oi
φ = -55°, ψ = -70° (approx.)
from 2qd3 chain A: 346-357

Change rendering:


The alpha helix is by far the most common helix. Note that it is a right-handed helix when formed with the common L-amino acids[1][2][3]. (It is left-handed when formed with D-amino acids[1][2][3].) When viewed from either end, right-handed helices turn clockwise when followed away from you.

See AlsoSee Also

ReferencesReferences

  1. 1.0 1.1 Novotny M, Kleywegt GJ. A survey of left-handed helices in protein structures. J Mol Biol. 2005 Mar 25;347(2):231-41. PMID:15740737 doi:10.1016/j.jmb.2005.01.037
  2. 2.0 2.1 Jourdan F, Lazzaroni S, Mendez BL, Lo Cantore P, de Julio M, Amodeo P, Iacobellis NS, Evidente A, Motta A. A left-handed alpha-helix containing both L- and D-amino acids: the solution structure of the antimicrobial lipodepsipeptide tolaasin. Proteins. 2003 Sep 1;52(4):534-43. PMID:12910453 doi:http://dx.doi.org/10.1002/prot.10418
  3. 3.0 3.1 Moradi M, Babin V, Roland C, Darden TA, Sagui C. Conformations and free energy landscapes of polyproline peptides. Proc Natl Acad Sci U S A. 2009 Dec 8;106(49):20746-51. Epub 2009 Nov 18. PMID:19923435 doi:10.1073/pnas.0906500106

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

Angel Herraez, Eric Martz, Karsten Theis, Joel L. Sussman