Collagen: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
Michal Harel (talk | contribs)
No edit summary
 
(145 intermediate revisions by 6 users not shown)
Line 1: Line 1:
<StructureSection load='4CLG' size='500' side='right' caption='Structure of Collagen (PDB entry [[4CLG]])'>Collagen, the most abundant protein in vertebrates, is an extracellular, inextensible fibrous protein that comprises the major protein component of such stress-bearing structures as bones, tendons, and ligaments. The objective of this exercise is to develop an understanding of the fibrous portion of collagen and to show how the different levels of protein structure come together and form a highly ordered and stable fiber.  Collagen's properties of rigidity and inextensibility are due to this highly ordered structure. The non-structurally order part of collagen is not illustrated in this model. This part of the protein complex having a different amino acid composition, lysine and hydroxylysine are particularly important residues, is globular in nature and not as structurally organized. Lysine and hydroxylysine form covalent crosslinks in the protein complex, thereby adding strength and some flexibility to the fiber. This covalent crosslinking continues throughout life and produces rigid collagen and brittle bones in older adults. [[Collagen Structure & Function]] for additional Information, and a link to movies of assembly of triple helix of type I and IV collagen is available in the External Links section.
<StructureSection load='4clg' size='350' side='right' caption='Structure of Collagen (PDB entry [[4clg]] or [[1cag]])' scene='Collagen/Opening/4' >


== Structure of a Segment ==
==Overview==


A fiber section is made up of 5 tropocollagens, each is shown in a <scene name='Collagen/Fiber_section/2'>different color</scene>. One limitation of this model of collagen segment is that instead of having flush cut ends as shown here, the ends of the tropocollagen in an actual fiber section would be <scene name='Collagen/Staggered_cut/2'>staggered</scene>. When the tropocollagens come together to form the fiber segment, they actually overlap one another in a staggered pattern. The presents of these staggered ends permit an association of the tropocollagens from different segments, and this association results in the formation of a strong fiber. <scene name='Collagen/Fiber_section_animation/8'>Add tropocollagens</scene> one at a time to form the fiber section.
'''Collagen''', the most abundant protein in vertebrates, is an extracellular, inextensible fibrous protein that comprises the major protein component of such stress-bearing structures as bones, tendons, and ligaments.  As with all fibrous proteins collagen is, for the most part, characterized by highly repetitive simple sequence. Here we study two model compounds (The structure of [[4clg]]<ref>J.M. Chen, C.E. Kung, S.H. Feairheller, E.M. Brown, AN ENERGETIC EVALUATION OF A "SMITH" COLLAGEN MICROFIBRIL MODEL, <I>J. Protein Chem., </I>'''10''', 535, 1991</ref> is shown in the applet to the right.) for naturally occurring collagen, in order to develop an understanding of the fibrous portion of collagen and to show how the different levels of protein structure come together and form a highly ordered and stable fiber. Collagen's properties of rigidity and inextensibility are due to this highly ordered structure. The part of collagen without structural order is not illustrated in this model. This part of the protein complex having a different amino acid composition, lysine and hydroxylysine are particularly important residues, is globular in nature and not as structurally organized. Lysine and hydroxylysine form covalent crosslinks in the protein complex, thereby adding strength and some flexibility to the fiber. This covalent crosslinking continues throughout life and produces a more rigid collagen and brittle bones in older adults. Go to [[Collagen Structure & Function]] for information on the functions and disorders of collagen and a link in the External Links section of this page for assembly movies of the triple helix of types I and IV. See also [[Fibrous Proteins]].
  select ({1 6 11 18 21 27 32 39 42 48 53 60 63 69 74 81 84 90 95 102 105 111 116 123 126 132 137 144 147 153 158 165 168 174 179 186 189 195 200 207 210 216 221 228 231 237 242 249 252 259 264 269 276 279 285 290 297 300 306 311 318 321 327 332 339 342 348 353 360 363 369 374 381 384 390 395 402 405 411 416 423 426 432 437 444 447 453 458 465 468 474 479 486 489 495 500 507 510 517 522 527 534 537 543 548 555 558 564 569 576 579 585 590 597 600 606 611 618 621 627 632 639 642 648 653 660 663 669 674 681 684 690 695 702 705 711 716 723 726 732 737 744 747 753 758 765 768 775 780 785 792 795 801 806 813 816 822 827 834 837 843 848 855 858 864 869 876 879 885 890 897 900 906 911 918 921 927 932 939 942 948 953 960 963 969 974 981 984 990 995 1002 1005 1011 1016 1023 1026 1033 1038 1043 1050 1053 1059 1064 1071 1074 1080 1085 1092 1095 1101 1106 1113 1116 1122 1127 1134 1137 1143 1148 1155 1158 1164 1169 1176 1179 1185 1190 1197 1200 1206 1211 1218 1221 1227 1232 1239 1242 1248 1253 1260 1263 1269 1274 1281 1284 1291 1296 1301 1308 1311 1317 1322 1329 1332 1338 1343 1350 1353 1359 1364 1371 1374 1380 1385 1392 1395 1401 1406 1413 1416 1422 1427 1434 1437 1443 1448 1455 1458 1464 1469 1476 1479 1485 1490 1497 1500 1506 1511 1518 1521 1527 1532 1539 1542 1549 1554 1559 1566 1569 1575 1580 1587 1590 1596 1601 1608 1611 1617 1622 1629 1632 1638 1643 1650 1653 1659 1664 1671 1674 1680 1685 1692 1695 1701 1706 1713 1716 1722 1727 1734 1737 1743 1748 1755 1758 1764 1769 1776 1779 1785 1790 1797 1800 1807 1812 1817 1824 1827 1833 1838 1845 1848 1854 1859 1866 1869 1875 1880 1887 1890 1896 1901 1908 1911 1917 1922 1929 1932 1938 1943 1950 1953 1959 1964 1971 1974 1980 1985 1992 1995 2001 2006 2013 2016 2022 2027 2034 2037 2043 2048 2055 2058 2065 2070 2075 2082 2085 2091 2096 2103 2106 2112 2117 2124 2127 2133 2138 2145 2148 2154 2159 2166 2169 2175 2180 2187 2190 2196 2201 2208 2211 2217 2222 2229 2232 2238 2243 2250 2253 2259 2264 2271 2274 2280 2285 2292 2295 2301 2306 2313 2316 2323 2328 2333 2340 2343 2349 2354 2361 2364 2370 2375 2382 2385 2391 2396 2403 2406 2412 2417 2424 2427 2433 2438 2445 2448 2454 2459 2466 2469 2475 2480 2487 2490 2496 2501 2508 2511 2517 2522 2529 2532 2538 2543 2550 2553 2559 2564 2571 2574 2581 2586 2591 2598 2601 2607 2612 2619 2622 2628 2633 2640 2643 2649 2654 2661 2664 2670 2675 2682 2685 2691 2696 2703 2706 2712 2717 2724 2727 2733 2738 2745 2748 2754 2759 2766 2769 2775 2780 2787 2790 2796 2801 2808 2811 2817 2822 2829 2832 2839 2844 2849 2856 2859 2865 2870 2877 2880 2886 2891 2898 2901 2907 2912 2919 2922 2928 2933 2940 2943 2949 2954 2961 2964 2970 2975 2982 2985 2991 2996 3003 3006 3012 3017 3024 3027 3033 3038 3045 3048 3054 3059 3066 3069 3075 3080 3087 3090 3097 3102 3107 3114 3117 3123 3128 3135 3138 3144 3149 3156 3159 3165 3170 3177 3180 3186 3191 3198 3201 3207 3212 3219 3222 3228 3233 3240 3243 3249 3254 3261 3264 3270 3275 3282 3285 3291 3296 3303 3306 3312 3317 3324 3327 3333 3338 3345 3348 3355 3360 3365 3372 3375 3381 3386 3393 3396 3402 3407 3414 3417 3423 3428 3435 3438 3444 3449 3456 3459 3465 3470 3477 3480 3486 3491 3498 3501 3507 3512 3519 3522 3528 3533 3540 3543 3549 3554 3561 3564 3570 3575 3582 3585 3591 3596 3603 3606 3613 3618 3623 3630 3633 3639 3644 3651 3654 3660 3665 3672 3675 3681 3686 3693 3696 3702 3707 3714 3717 3723 3728 3735 3738 3744 3749 3756 3759 3765 3770 3777 3780 3786 3791 3798 3801 3807 3812 3819 3822 3828 3833 3840 3843 3849 3854 3861 3864});
  Spacefill 1.7;
  select ({774:1031 2322:2579 3972:4005 4176:4209});
  color atoms opaque [xff0000];
  select ({1032:1289 2580:2837 4006:4039 4210:4243});
  color atoms opaque [x0000ff];
  select ({0 2 4 5 9 10 12:14 16 17 19 20 22 25 26 30 31 33:35 37 38 40 41 43 46 47 51 52 54:56 58 59 61 62 64 67 68 72 73 75:77 79 80 82 83 85 88 89 93 94 96:98 100 101 103 104 106 109 110 114 115 117:119 121 122 124 125 127 130 131 135 136 138:140 142 143 145 146 148 151 152 156 157 159:161 163 164 166 167 169 172 173 177 178 180:182 184 185 187 188 190 193 194 198 199 201:203 205 206 208 209 211 214 215 219 220 222:224 226 227 229 230 232 235 236 240 241 243:245 247 248 250 251 253 256 258 260 262 263 267 268 270:272 274 275 277 278 280 283 284 288 289 291:293 295 296 298 299 301 304 305 309 310 312:314 316 317 319 320 322 325 326 330 331 333:335 337 338 340 341 343 346 347 351 352 354:356 358 359 361 362 364 367 368 372 373 375:377 379 380 382 383 385 388 389 393 394 396:398 400 401 403 404 406 409 410 414 415 417:419 421 422 424 425 427 430 431 435 436 438:440 442 443 445 446 448 451 452 456 457 459:461 463 464 466 467 469 472 473 477 478 480:482 484 485 487 488 490 493 494 498 499 501:503 505 506 508 509 511 514 516 518 520 521 525 526 528:530 532 533 535 536 538 541 542 546 547 549:551 553 554 556 557 559 562 563 567 568 570:572 574 575 577 578 580 583 584 588 589 591:593 595 596 598 599 601 604 605 609 610 612:614 616 617 619 620 622 625 626 630 631 633:635 637 638 640 641 643 646 647 651 652 654:656 658 659 661 662 664 667 668 672 673 675:677 679 680 682 683 685 688 689 693 694 696:698 700 701 703 704 706 709 710 714 715 717:719 721 722 724 725 727 730 731 735 736 738:740 742 743 745 746 748 751 752 756 757 759:761 763 764 766 767 769 772 774 776 778 779 783 784 786:788 790 791 793 794 796 799 800 804 805 807:809 811 812 814 815 817 820 821 825 826 828:830 832 833 835 836 838 841 842 846 847 849:851 853 854 856 857 859 862 863 867 868 870:872 874 875 877 878 880 883 884 888 889 891:893 895 896 898 899 901 904 905 909 910 912:914 916 917 919 920 922 925 926 930 931 933:935 937 938 940 941 943 946 947 951 952 954:956 958 959 961 962 964 967 968 972 973 975:977 979 980 982 983 985 988 989 993 994 996:998 1000 1001 1003 1004 1006 1009 1010 1014 1015 1017:1019 1021 1022 1024 1025 1027 1030 1032 1034 1036 1037 1041 1042 1044:1046 1048 1049 1051 1052 1054 1057 1058 1062 1063 1065:1067 1069 1070 1072 1073 1075 1078 1079 1083 1084 1086:1088 1090 1091 1093 1094 1096 1099 1100 1104 1105 1107:1109 1111 1112 1114 1115 1117 1120 1121 1125 1126 1128:1130 1132 1133 1135 1136 1138 1141 1142 1146 1147 1149:1151 1153 1154 1156 1157 1159 1162 1163 1167 1168 1170:1172 1174 1175 1177 1178 1180 1183 1184 1188 1189 1191:1193 1195 1196 1198 1199 1201 1204 1205 1209 1210 1212:1214 1216 1217 1219 1220 1222 1225 1226 1230 1231 1233:1235 1237 1238 1240 1241 1243 1246 1247 1251 1252 1254:1256 1258 1259 1261 1262 1264 1267 1268 1272 1273 1275:1277 1279 1280 1282 1283 1285 1288 1290 1292 1294 1295 1299 1300 1302:1304 1306 1307 1309 1310 1312 1315 1316 1320 1321 1323:1325 1327 1328 1330 1331 1333 1336 1337 1341 1342 1344:1346 1348 1349 1351 1352 1354 1357 1358 1362 1363 1365:1367 1369 1370 1372 1373 1375 1378 1379 1383 1384 1386:1388 1390 1391 1393 1394 1396 1399 1400 1404 1405 1407:1409 1411 1412 1414 1415 1417 1420 1421 1425 1426 1428:1430 1432 1433 1435 1436 1438 1441 1442 1446 1447 1449:1451 1453 1454 1456 1457 1459 1462 1463 1467 1468 1470:1472 1474 1475 1477 1478 1480 1483 1484 1488 1489 1491:1493 1495 1496 1498 1499 1501 1504 1505 1509 1510 1512:1514 1516 1517 1519 1520 1522 1525 1526 1530 1531 1533:1535 1537 1538 1540 1541 1543 1546 1548 1550 1552 1553 1557 1558 1560:1562 1564 1565 1567 1568 1570 1573 1574 1578 1579 1581:1583 1585 1586 1588 1589 1591 1594 1595 1599 1600 1602:1604 1606 1607 1609 1610 1612 1615 1616 1620 1621 1623:1625 1627 1628 1630 1631 1633 1636 1637 1641 1642 1644:1646 1648 1649 1651 1652 1654 1657 1658 1662 1663 1665:1667 1669 1670 1672 1673 1675 1678 1679 1683 1684 1686:1688 1690 1691 1693 1694 1696 1699 1700 1704 1705 1707:1709 1711 1712 1714 1715 1717 1720 1721 1725 1726 1728:1730 1732 1733 1735 1736 1738 1741 1742 1746 1747 1749:1751 1753 1754 1756 1757 1759 1762 1763 1767 1768 1770:1772 1774 1775 1777 1778 1780 1783 1784 1788 1789 1791:1793 1795 1796 1798 1799 1801 1804 1806 1808 1810 1811 1815 1816 1818:1820 1822 1823 1825 1826 1828 1831 1832 1836 1837 1839:1841 1843 1844 1846 1847 1849 1852 1853 1857 1858 1860:1862 1864 1865 1867 1868 1870 1873 1874 1878 1879 1881:1883 1885 1886 1888 1889 1891 1894 1895 1899 1900 1902:1904 1906 1907 1909 1910 1912 1915 1916 1920 1921 1923:1925 1927 1928 1930 1931 1933 1936 1937 1941 1942 1944:1946 1948 1949 1951 1952 1954 1957 1958 1962 1963 1965:1967 1969 1970 1972 1973 1975 1978 1979 1983 1984 1986:1988 1990 1991 1993 1994 1996 1999 2000 2004 2005 2007:2009 2011 2012 2014 2015 2017 2020 2021 2025 2026 2028:2030 2032 2033 2035 2036 2038 2041 2042 2046 2047 2049:2051 2053 2054 2056 2057 2059 2062 2064 2066 2068 2069 2073 2074 2076:2078 2080 2081 2083 2084 2086 2089 2090 2094 2095 2097:2099 2101 2102 2104 2105 2107 2110 2111 2115 2116 2118:2120 2122 2123 2125 2126 2128 2131 2132 2136 2137 2139:2141 2143 2144 2146 2147 2149 2152 2153 2157 2158 2160:2162 2164 2165 2167 2168 2170 2173 2174 2178 2179 2181:2183 2185 2186 2188 2189 2191 2194 2195 2199 2200 2202:2204 2206 2207 2209 2210 2212 2215 2216 2220 2221 2223:2225 2227 2228 2230 2231 2233 2236 2237 2241 2242 2244:2246 2248 2249 2251 2252 2254 2257 2258 2262 2263 2265:2267 2269 2270 2272 2273 2275 2278 2279 2283 2284 2286:2288 2290 2291 2293 2294 2296 2299 2300 2304 2305 2307:2309 2311 2312 2314 2315 2317 2320 2322 2324 2326 2327 2331 2332 2334:2336 2338 2339 2341 2342 2344 2347 2348 2352 2353 2355:2357 2359 2360 2362 2363 2365 2368 2369 2373 2374 2376:2378 2380 2381 2383 2384 2386 2389 2390 2394 2395 2397:2399 2401 2402 2404 2405 2407 2410 2411 2415 2416 2418:2420 2422 2423 2425 2426 2428 2431 2432 2436 2437 2439:2441 2443 2444 2446 2447 2449 2452 2453 2457 2458 2460:2462 2464 2465 2467 2468 2470 2473 2474 2478 2479 2481:2483 2485 2486 2488 2489 2491 2494 2495 2499 2500 2502:2504 2506 2507 2509 2510 2512 2515 2516 2520 2521 2523:2525 2527 2528 2530 2531 2533 2536 2537 2541 2542 2544:2546 2548 2549 2551 2552 2554 2557 2558 2562 2563 2565:2567 2569 2570 2572 2573 2575 2578 2580 2582 2584 2585 2589 2590 2592:2594 2596 2597 2599 2600 2602 2605 2606 2610 2611 2613:2615 2617 2618 2620 2621 2623 2626 2627 2631 2632 2634:2636 2638 2639 2641 2642 2644 2647 2648 2652 2653 2655:2657 2659 2660 2662 2663 2665 2668 2669 2673 2674 2676:2678 2680 2681 2683 2684 2686 2689 2690 2694 2695 2697:2699 2701 2702 2704 2705 2707 2710 2711 2715 2716 2718:2720 2722 2723 2725 2726 2728 2731 2732 2736 2737 2739:2741 2743 2744 2746 2747 2749 2752 2753 2757 2758 2760:2762 2764 2765 2767 2768 2770 2773 2774 2778 2779 2781:2783 2785 2786 2788 2789 2791 2794 2795 2799 2800 2802:2804 2806 2807 2809 2810 2812 2815 2816 2820 2821 2823:2825 2827 2828 2830 2831 2833 2836 2838 2840 2842 2843 2847 2848 2850:2852 2854 2855 2857 2858 2860 2863 2864 2868 2869 2871:2873 2875 2876 2878 2879 2881 2884 2885 2889 2890 2892:2894 2896 2897 2899 2900 2902 2905 2906 2910 2911 2913:2915 2917 2918 2920 2921 2923 2926 2927 2931 2932 2934:2936 2938 2939 2941 2942 2944 2947 2948 2952 2953 2955:2957 2959 2960 2962 2963 2965 2968 2969 2973 2974 2976:2978 2980 2981 2983 2984 2986 2989 2990 2994 2995 2997:2999 3001 3002 3004 3005 3007 3010 3011 3015 3016 3018:3020 3022 3023 3025 3026 3028 3031 3032 3036 3037 3039:3041 3043 3044 3046 3047 3049 3052 3053 3057 3058 3060:3062 3064 3065 3067 3068 3070 3073 3074 3078 3079 3081:3083 3085 3086 3088 3089 3091 3094 3096 3098 3100 3101 3105 3106 3108:3110 3112 3113 3115 3116 3118 3121 3122 3126 3127 3129:3131 3133 3134 3136 3137 3139 3142 3143 3147 3148 3150:3152 3154 3155 3157 3158 3160 3163 3164 3168 3169 3171:3173 3175 3176 3178 3179 3181 3184 3185 3189 3190 3192:3194 3196 3197 3199 3200 3202 3205 3206 3210 3211 3213:3215 3217 3218 3220 3221 3223 3226 3227 3231 3232 3234:3236 3238 3239 3241 3242 3244 3247 3248 3252 3253 3255:3257 3259 3260 3262 3263 3265 3268 3269 3273 3274 3276:3278 3280 3281 3283 3284 3286 3289 3290 3294 3295 3297:3299 3301 3302 3304 3305 3307 3310 3311 3315 3316 3318:3320 3322 3323 3325 3326 3328 3331 3332 3336 3337 3339:3341 3343 3344 3346 3347 3349 3352 3354 3356 3358 3359 3363 3364 3366:3368 3370 3371 3373 3374 3376 3379 3380 3384 3385 3387:3389 3391 3392 3394 3395 3397 3400 3401 3405 3406 3408:3410 3412 3413 3415 3416 3418 3421 3422 3426 3427 3429:3431 3433 3434 3436 3437 3439 3442 3443 3447 3448 3450:3452 3454 3455 3457 3458 3460 3463 3464 3468 3469 3471:3473 3475 3476 3478 3479 3481 3484 3485 3489 3490 3492:3494 3496 3497 3499 3500 3502 3505 3506 3510 3511 3513:3515 3517 3518 3520 3521 3523 3526 3527 3531 3532 3534:3536 3538 3539 3541 3542 3544 3547 3548 3552 3553 3555:3557 3559 3560 3562 3563 3565 3568 3569 3573 3574 3576:3578 3580 3581 3583 3584 3586 3589 3590 3594 3595 3597:3599 3601 3602 3604 3605 3607 3610 3612 3614 3616 3617 3621 3622 3624:3626 3628 3629 3631 3632 3634 3637 3638 3642 3643 3645:3647 3649 3650 3652 3653 3655 3658 3659 3663 3664 3666:3668 3670 3671 3673 3674 3676 3679 3680 3684 3685 3687:3689 3691 3692 3694 3695 3697 3700 3701 3705 3706 3708:3710 3712 3713 3715 3716 3718 3721 3722 3726 3727 3729:3731 3733 3734 3736 3737 3739 3742 3743 3747 3748 3750:3752 3754 3755 3757 3758 3760 3763 3764 3768 3769 3771:3773 3775 3776 3778 3779 3781 3784 3785 3789 3790 3792:3794 3796 3797 3799 3800 3802 3805 3806 3810 3811 3813:3815 3817 3818 3820 3821 3823 3826 3827 3831 3832 3834:3836 3838 3839 3841 3842 3844 3847 3848 3852 3853 3855:3857 3859 3860 3862 3863 3865 3868 3870:4379});
  Spacefill 1.95;
  select ({0:257 1548:1805 3096:3353 3870:3903 4074:4107 4278:4311});
  color atoms opaque [x800080];
  select ({7 23 28 44 49 65 70 86 91 107 112 128 133 149 154 170 175 191 196 212 217 233 238 254 257 265 281 286 302 307 323 328 344 349 365 370 386 391 407 412 428 433 449 454 470 475 491 496 512 515 523 539 544 560 565 581 586 602 607 623 628 644 649 665 670 686 691 707 712 728 733 749 754 770 773 781 797 802 818 823 839 844 860 865 881 886 902 907 923 928 944 949 965 970 986 991 1007 1012 1028 1031 1039 1055 1060 1076 1081 1097 1102 1118 1123 1139 1144 1160 1165 1181 1186 1202 1207 1223 1228 1244 1249 1265 1270 1286 1289 1297 1313 1318 1334 1339 1355 1360 1376 1381 1397 1402 1418 1423 1439 1444 1460 1465 1481 1486 1502 1507 1523 1528 1544 1547 1555 1571 1576 1592 1597 1613 1618 1634 1639 1655 1660 1676 1681 1697 1702 1718 1723 1739 1744 1760 1765 1781 1786 1802 1805 1813 1829 1834 1850 1855 1871 1876 1892 1897 1913 1918 1934 1939 1955 1960 1976 1981 1997 2002 2018 2023 2039 2044 2060 2063 2071 2087 2092 2108 2113 2129 2134 2150 2155 2171 2176 2192 2197 2213 2218 2234 2239 2255 2260 2276 2281 2297 2302 2318 2321 2329 2345 2350 2366 2371 2387 2392 2408 2413 2429 2434 2450 2455 2471 2476 2492 2497 2513 2518 2534 2539 2555 2560 2576 2579 2587 2603 2608 2624 2629 2645 2650 2666 2671 2687 2692 2708 2713 2729 2734 2750 2755 2771 2776 2792 2797 2813 2818 2834 2837 2845 2861 2866 2882 2887 2903 2908 2924 2929 2945 2950 2966 2971 2987 2992 3008 3013 3029 3034 3050 3055 3071 3076 3092 3095 3103 3119 3124 3140 3145 3161 3166 3182 3187 3203 3208 3224 3229 3245 3250 3266 3271 3287 3292 3308 3313 3329 3334 3350 3353 3361 3377 3382 3398 3403 3419 3424 3440 3445 3461 3466 3482 3487 3503 3508 3524 3529 3545 3550 3566 3571 3587 3592 3608 3611 3619 3635 3640 3656 3661 3677 3682 3698 3703 3719 3724 3740 3745 3761 3766 3782 3787 3803 3808 3824 3829 3845 3850 3866 3869});
  Spacefill 1.2;
  select ({516:773 2064:2321 3612:3869 3938:3971 4142:4175 4346:4379});
  color atoms opaque [xffff00];
  select ({1290:1547 2838:3095 4040:4073 4244:4277});
  color atoms opaque [x00ffff];
  select ({3 8 15 24 29 36 45 50 57 66 71 78 87 92 99 108 113 120 129 134 141 150 155 162 171 176 183 192 197 204 213 218 225 234 239 246 255 261 266 273 282 287 294 303 308 315 324 329 336 345 350 357 366 371 378 387 392 399 408 413 420 429 434 441 450 455 462 471 476 483 492 497 504 513 519 524 531 540 545 552 561 566 573 582 587 594 603 608 615 624 629 636 645 650 657 666 671 678 687 692 699 708 713 720 729 734 741 750 755 762 771 777 782 789 798 803 810 819 824 831 840 845 852 861 866 873 882 887 894 903 908 915 924 929 936 945 950 957 966 971 978 987 992 999 1008 1013 1020 1029 1035 1040 1047 1056 1061 1068 1077 1082 1089 1098 1103 1110 1119 1124 1131 1140 1145 1152 1161 1166 1173 1182 1187 1194 1203 1208 1215 1224 1229 1236 1245 1250 1257 1266 1271 1278 1287 1293 1298 1305 1314 1319 1326 1335 1340 1347 1356 1361 1368 1377 1382 1389 1398 1403 1410 1419 1424 1431 1440 1445 1452 1461 1466 1473 1482 1487 1494 1503 1508 1515 1524 1529 1536 1545 1551 1556 1563 1572 1577 1584 1593 1598 1605 1614 1619 1626 1635 1640 1647 1656 1661 1668 1677 1682 1689 1698 1703 1710 1719 1724 1731 1740 1745 1752 1761 1766 1773 1782 1787 1794 1803 1809 1814 1821 1830 1835 1842 1851 1856 1863 1872 1877 1884 1893 1898 1905 1914 1919 1926 1935 1940 1947 1956 1961 1968 1977 1982 1989 1998 2003 2010 2019 2024 2031 2040 2045 2052 2061 2067 2072 2079 2088 2093 2100 2109 2114 2121 2130 2135 2142 2151 2156 2163 2172 2177 2184 2193 2198 2205 2214 2219 2226 2235 2240 2247 2256 2261 2268 2277 2282 2289 2298 2303 2310 2319 2325 2330 2337 2346 2351 2358 2367 2372 2379 2388 2393 2400 2409 2414 2421 2430 2435 2442 2451 2456 2463 2472 2477 2484 2493 2498 2505 2514 2519 2526 2535 2540 2547 2556 2561 2568 2577 2583 2588 2595 2604 2609 2616 2625 2630 2637 2646 2651 2658 2667 2672 2679 2688 2693 2700 2709 2714 2721 2730 2735 2742 2751 2756 2763 2772 2777 2784 2793 2798 2805 2814 2819 2826 2835 2841 2846 2853 2862 2867 2874 2883 2888 2895 2904 2909 2916 2925 2930 2937 2946 2951 2958 2967 2972 2979 2988 2993 3000 3009 3014 3021 3030 3035 3042 3051 3056 3063 3072 3077 3084 3093 3099 3104 3111 3120 3125 3132 3141 3146 3153 3162 3167 3174 3183 3188 3195 3204 3209 3216 3225 3230 3237 3246 3251 3258 3267 3272 3279 3288 3293 3300 3309 3314 3321 3330 3335 3342 3351 3357 3362 3369 3378 3383 3390 3399 3404 3411 3420 3425 3432 3441 3446 3453 3462 3467 3474 3483 3488 3495 3504 3509 3516 3525 3530 3537 3546 3551 3558 3567 3572 3579 3588 3593 3600 3609 3615 3620 3627 3636 3641 3648 3657 3662 3669 3678 3683 3690 3699 3704 3711 3720 3725 3732 3741 3746 3753 3762 3767 3774 3783 3788 3795 3804 3809 3816 3825 3830 3837 3846 3851 3858 3867});
  Spacefill 1.85;
  select ({258:515 1806:2063 3354:3611 3904:3937 4108:4141 4312:4345});
  color atoms opaque [x008000];
  select BONDS ({0:4709});
  wireframe 0.0; select *:a,*:b,*:c; display selected; delay 2; select *:a,*:b,*:c, *:d,*:e,*:f; display selected; delay 2; select *:a,*:b,*:c, *:d,*:e,*:f, *:g,*:h,*:i; display selected; delay 2; select *:a,*:b,*:c, *:d,*:e,*:f, *:g,*:h,*:i, *:j,*:k,*:l; display selected; delay 2; select *:a,*:b,*:c, *:d,*:e,*:f, *:g,*:h,*:i, *:j,*:k,*:l, *:m,*:n,*:p; display selected;
</StructureSection>


<applet load='4CLG' scene='Collagen/Collagen_initial/1' size='300' frame='true' align='right' caption='Collagen' />
== Structure of a Segment ==


The collagen sequence is typically (Gly - Pro - hydroxy-Pro)<sub>n</sub>.  
A fiber segment is made up of 5 tropocollagens, each is shown in a <scene name='Collagen/Fiber_segment/2'>different color</scene>. One limitation of this model of collagen segment is that instead of having flush cut ends as shown here, the ends of the tropocollagen in an actual fiber section would be <scene name='Collagen/Staggered_cut/4'>staggered</scene>. This staggered pattern is produced when the tropocollagens associate to form the fiber segment. The collagen fiber is constructed by connecting the segments together, and the presence of these staggered ends permits the tropocollagens from different segments to form strong attractions adding to the strength of the fiber. Add tropocollagens <scene name='Collagen/Fiber_section_one/2'>one</scene> at a time to form the fiber section, <scene name='Collagen/Fiber_section_two/2'>two</scene>, <scene name='Collagen/Fiber_section_three/3'>three</scene>, <scene name='Collagen/Fiber_section_four/2'>four</scene>, <scene name='Collagen/Fiber_section_five/2'>five</scene>.  View fiber segment as <scene name='Collagen/Fiber_section_backbone/4'>backbone only</scene>.  Viewing the segment from the end one can see that without the side chains being displayed the center of the fiber is empty. Each <scene name='Collagen/One_tropocollagen/1'>tropocollagen molecule</scene> contains 3 parallel peptide chains wrapped around one another to make a right-handed triple helix that is 87 Å long and ~10 Å in diameter.  Tropocollagen displayed as <scene name='Collagen/One_tropocollagen_backbone/1'>backbone</scene> only.
== Lower Levels of Structure ==


Each  <scene name='Collagen/Collagen_chain/1'>chain</scene> forms an elongated left-handed helix. Three of these chains are associated to a right-handed <scene name='Collagen/1cag/5'>triple helix</scene>.
== Primary Structure of Peptide ==


Every third amino acid is <scene name='Collagen/1cag/1'>a glycine</scene>
<scene name='Collagen/One_peptide_wireframe/4'>Show side chains</scene> of the peptide in wireframe display.  Identify the amino acids making up the peptide by resting the cursor on a residue and observing the name in the label (Toggling spin off will make this easier.). Which three amino acids are present in the peptide in a reocurring pattern?  Collagen is characterized by a distinctive repeating sequence: (Gly-X-Y)n where X is often Pro, Y is usually 5-hydroxyproline (Hyp), and n may be >300. The model ([[4clg]]) being studied here contains a <scene name='Collagen/One_peptide_tricolored/3'>repeating sequence</scene> of residues - <font color="#ff0000">Gly</font>-<span style="color:limegreen;background-color:black;font-weight:bold;">Pro</span>-<span style="color:yellow;background-color:black;font-weight:bold;">Hyp</span>.  This sequence produces a conformation which is a <scene name='Collagen/One_peptide_backbone/1'>left-handed helix</scene> with a rise 10.0 Å/turn or <scene name='Collagen/Peptide_3_residue_segments/1'>3.3 residues per turn</scene>, the peptide is colored in three residue segments.  <scene name='Collagen/Peptide_helix_z_axis/1'>Looking down</scene> the center axis of a segment of the helix.  Since a helix with a larger rise is superimposed on the helix described above, the entire center axis does not align for viewing.  The <scene name='Collagen/Ramachandran/2'>Ramachandran plot</scene> shows that the psi and phi angles of the collagen helix are different from the α-helix, which has a rise of 3.6. The two clusters shown here are outside of the area expected for an α-helix. Review where you would expect a cluster of [[Ramachandran_Plots|α-helix]] residues to be located.


<scene name='Collagen/1cag/3'>proline</scene>
== Other Levels of Structure  ==


<scene name='Collagen/1cag/4'>hydroxyproline</scene>
As shown above tropocollagen is formed by <scene name='Collagen/One_tropocollagen/1'>three peptides</scene> twisting around each other, and in doing so the peptides make <scene name='Collagen/Peptide_3_residue_segments2/2'>one turn every ~7 three-residue repeats</scene> (Cyan colored residues mark the approximate length of one turn.).  <scene name='Collagen/One_tropocollagen2/1'>Three cyan colored residues</scene> mark the approximate distance of one turn of the peptides in a tropocollagen.  Tropocollagen displayed as <scene name='Collagen/One_tropocollagen_backbone2/1'>backbone only</scene> clearly shows both types of helical turns - the 3.3 residue/turn and ~21 residue/turn. 


<scene name='Collagen/1cag/2'>alanine</scene>
Looking down the axis of a tropocollagen displayed as wireframe, <font color="#ff0000">glycine</font> can be seen <scene name='Collagen/Gly_position_tropo/2'>positioned in the center</scene> of the triple helix.  The two types of helical turns consistently positions the Gly in the center of the triple helix. <span style="color:limegreen;background-color:black;font-weight:bold;">Proline</span> and the <span style="color:yellow;background-color:black;font-weight:bold;">hydroxyproline</span> are on the <scene name='Collagen/Pros_position_tropo/1'>outside</scene> of the triple helix.  With the hydroxyl group of Hyp extending to the surface of the triple helix, it can be involved in hydrogen bond formation, as will be seen in the next section. The cyclical side chains of Pro and Hyp are some what rigid, and this rigidity adds to the stability  of the collagen fiber. The primary structure of repeating Gly-Pro-Hyp along with the two types of helical turns determine the 3D positions of Gly, Pro and Hyp in the tropocollagen.


==Ribbon and Spacefilling Diagrams of the Collagen Triple Helix==
In order to make a compact strong fiber the interior residues of the triple helix need to be close packed.  The <scene name='Collagen/Gly_no_hindrance/1'>Gly side chain</scene> is the only one small enough to accommodate this close packing in the interior of the triple helix (realize that in this model the hydrogen on the <span style="color:limegreen;background-color:black;font-weight:bold;">α carbon</span> is not displayed).  <scene name='Collagen/Glys_close_pack/1'>Three Gly</scene>, one on each of three different chains, are close packed together.  The gray atoms of the yellow and lime Gly are the α-carbons, and only a hydrogen could fit between these carbons and the atoms of the adjacent Gly.  <scene name='Collagen/Glys_pro_close/2'>A Pro</scene> on each of the 3 chains are shown close packed to the three Gly (lime, cyan, yellow). Adding the <scene name='Collagen/Glys_pro_hyp/1'>Hyp</scene> shows that Pro and Hyp are tightly positioned around the small interior Gly leaving no space for side chains longer than the single hydrogen of Gly.
<kinemage align="right" width="450" height="400" file="collagen1.kin" />


Fibrous proteins are, for the most part, characterized by highly repetitive simple sequences. We shall examine here a trimer that forms a collagen-like triple helix.
Collagen, the most abundant protein in vertebrates, is an extracellular protein that comprises the major protein component of such stress-bearing structures as bones, tendons, and ligaments. Collagen is characterized by a distinctive repeating sequence: (Gly-X-Y)n where X is often Pro, Y is often 5-hydroxyproline (Hyp), and n may be >300. This, as we shall see, causes each collagen chain to assume a left-handed helical conformation with 3.3 residues per turn and a pitch (rise per turn) of 10.0 Å. Three such chains associate in parallel to form a right-handed triple helix.


Here we study a model compound for naturally occurring collagen, a 30-residue synthetic polypeptide of sequence (Pro-Hyp-Gly)4-Pro-Hyp-Ala-(Pro-Hyp-Gly)5, three chains of which associate to form a collagen-like triple helix of parallel strands that is 87 Å long and ~10 Å in diameter.
== Maintainance Forces ==


View1 shows the triple helical molecule in ribbon form seen perpendicular to its triple helical axis and with its three parallel and identical chains, "Chain 1", "Chain 2", and "Chain 3", colored purple, gold, and white, respectively. View2 is down the triple helical axis, a perspective in which this ribbon diagram appears to have a hollow center. However, click the "ANIMATE" button to show the spacefilling form and prove to yourself that the center is not hollow.  Return to the ribbon diagram by clicking the "ANIMATE" button again before continuing.
== Intra-tropocollagen Attractions ==


Go back to View1 and repeatedly click the "2ANIMATE" button. This "grows" Strand 1 from its N- to its C-terminus in differently colored 3-residue increments. Note how the molecule's three strands twist around each other and that the triple helix makes one turn every ~7 three-residue repeats.  
Intra-tropocollagen attractions are primarily hydrogen bonds formed between the peptides in the triple helix.  The three polypeptide chains are <scene name='Collagen/Intra-hbonds/4'>staggered</scene> in position by one residue, that is, a <span style="color:limegreen;background-color:black;font-weight:bold;">Pro</span> on Chain A is at the same level along the triple helix axis as a <font color="#ff0000">Gly</font> on Chain B and a <span style="color:gold;background-color:black;font-weight:bold;">Hyp</span> on Chain C. This staggered arrangement not only <scene name='Collagen/Intra-hbonds2/6'>aligns</scene> a <font color="#ff0000">Gly</font> backbone NH (imino group) with a <span style="color:limegreen;background-color:black;font-weight:bold;">Pro</span> backbone O (carbonyl oxygen) on one of the other peptides but also brings the two groups close enough so that a <scene name='Collagen/Intra-hbonds6/2'>hydrogen bond</scene> can form between the imino hydrogen and the carbonyl oxygen. This alignment occurs with Gly in each of the three peptides so that the Gly imino hydrogens of Chain A form <scene name='Collagen/Hbonds_a_to_b/6'>hydrogen bonds</scene> (<span style="color:orange;background-color:black;font-weight:bold;">orange</span>) with the Pro carbonyl oxygens on Chain B, and likewise Gly of <scene name='Collagen/Hbonds_a_to_b/5'>Chain B to Pro of Chain C</scene> (<span style="color:yellow;background-color:black;font-weight:bold;">yellow</span>) and Gly of <scene name='Collagen/Hbonds_c_to_a3/8'>Chain C to Pro of Chain A</scene> (<span style="color:limegreen;background-color:black;font-weight:bold;">green</span>).  The force of all these hydrogen bonds extending the length of the tropocollagen add up to a strong attractive force which mantain the integrity of the tropocollagen.  Since the main chain N atoms of both Pro and Hyp residues lack H atoms, only Gly can provide hydrogen to form these hydrogen bonds.
 


Repeatedly click the "ANIMATE" button to alternately display the original ribbon diagram and a spacefilling diagram of the polypeptide chains together with their side chains. The chains of the spacefilling diagram, which are colored identically to those of the ribbon diagram, can be individually turned on and off. Displaying one or two chains as ribbons and the remainder in spacefilling form may better reveal the helical character of the triple helix.
== Inter-tropocollagen Attractions ==


==Collagen Backbone and the Effect of a Mutation==
Hydrogen bonds are also an important inter-tropocollagen force which holds the tropocollagens together in the fiber segment. As shown above, <span style="color:gold;background-color:black;font-weight:bold;">Hyp</span> is the outer most residue on the <scene name='Collagen/Pros_position_tropo/1'>surface</scene> of the triple helix, and the hydroxyl groups are the atoms that extend out the most from the surface.  The hydrogen bonds are formed between the hydroxyl hydrogen of a Hyp and a backbone carbonyl oxygen.  As the peptides in a tropocollagen twist about each other they come into <scene name='Collagen/Hlite_c_k_peptides/1'>close contact</scene> with particular peptides in adjacent tropocollagens and then move away from them. The two peptide highlighted in spacefill are located in two different tropocollagens.  Notice that in this case, they make contact with each other in the middle of the strands, and a hydrogen bond is located at this point of contact.  The <scene name='Collagen/Inter-hbonds1/2'>hydrogen bond</scene> consist of the oxygen of a carbonyl of a Hyp in a <font bold="" color="blue"><strong>peptide</strong></font> of one tropocollagen and the hydroxyl hydrogen of a Hyp in a <span style="color:gold;background-color:black;font-weight:bold;">peptide</span> of another tropocollagen.  Another example shows <scene name='Collagen/Hlite_k_o/1'>two peptides</scene> from two different tropocollagens making contact at the ends of the fiber segment, and of course it is within these regions where the inter-tropocollagen attractions occur. At one end a <scene name='Collagen/Inter-hbond2/4'>hydrogen bond</scene> is formed between a hydrogen of Hyp in one <span style="color:gold;background-color:black;font-weight:bold;">peptide</span> and an oxygen of a Gly carbonyl in the second <font color="red"><strong>peptide</strong></font>. At the other end of the two peptides a <scene name='Collagen/Inter-hbond3/2'>Hyp carbonyl oxygen</scene> donates its electrons to a Hyp hydroxyl hydrogen. Show the <scene name='Collagen/2nd_view_hbond3/2'>hydrogen bond</scene> in the context of the six peptides of the two tropocollagens. The above examples of hydrogen bonding illustrate that Hyp plays a central role in maintaining the structures of both the tropocollagen and the collagen fiber.  Without the proper amount of vitamin C in their diets humans can not make Hyp, and therefore can not make stable collagen and strong bones.
<kinemage align="right" width="400" height="400" file="collagen2.kin" />
This kinemage displays all of the atoms of the collagen model compound (Pro-Hyp-Gly)4-Pro-Hyp-Ala-(Pro-Hyp-Gly)5 in stick form (note that the "essential" Gly residue in this model compound's central
triplet is replaced by Ala). View1 shows the triple helix in side view with "Chain 1" in pinktint, "Chain 2" in yellowtint, and "Chain 3" in white. The Pro, Hyp, and Ala side chains, which are independently controlled by the corresponding buttons, are green, cyan, and magenta, respectively. Use View1 and View2, which is down the triple helix axis, to prove to yourself that all Pro and Hyp side chains are on the periphery of the triple helix. These rigid groups are thought to help stabilize the collagen conformation.
== Effect of a Mutation ==
The mutation being considered is an Ala replacing a Gly.  Synthetic model PDB ID: [[1cag]]<ref>J.BELLA,M.EATON,B.BRODSKY,H.M.BERMAN, CRYSTAL AND MOLECULAR STRUCTURE OF A COLLAGEN-LIKE PEPTIDE AT 1.9 A RESOLUTION. ''SCIENCE'', '''266''', 75, 1994</ref> is <scene name='Collagen/1cag/7'>tropocollagen</scene> whose peptides contain thirty residues and have a <scene name='Collagen/Collagen_chain_1cag/4'>sequence</scene> of (Pro-Hyp-Gly)4-Pro-Hyp-Ala-(Pro-Hyp-Gly)5 (Ala displayed as large wireframe and colored as {{Template:ColorKey_Element_C}} {{Template:ColorKey_Element_O}} {{Template:ColorKey_Element_N}}).   Viewing [[1cag]] from the side of the fiber shows: the <scene name='Collagen/1cag1/1'>Gly</scene> is only partially visible because it is buried in the interior, <scene name='Collagen/1cag2/1'>Pro</scene> being much more visible is positioned closer to the surface, <scene name='Collagen/1cag3/1'>Hyp</scene> being entirely on the surface is clearly visible, and <scene name='Collagen/1cag4/1'>Ala</scene> being a substitute for Gly is only partially visible.  


View3 and View4 are side and top views of a segment of the collagen helix in which its three polypeptides all consist of repeating triplets of ideal sequence, (Gly-Pro-Hyp)n. Go to View3 to see that the three polypeptide chains are staggered in sequence by one residue, that is, a Gly on Chain 1 is at the same level along the triple helix axis as a Hyp on Chain 2 and a Pro on Chain 3. Turn on the "H bonds" button (H bonds are represented by dashed orange lines), to see that this staggered arrangement permits the formation of a hydrogen bond from the Gly main chain NH of Chain 1 to the Pro main chain O on Chain 2 (and likewise from Chain 2 to Chain 3 and from Chain 3 to Chain 1). Since the main chain N atoms of both Pro and Hyp residues lack H atoms, this exhausts the ability of the main chain to donate hydrogen bonds. Although the center of the triple helix appears to be hollow in View4, taking into account the van der Waals radii of its various atoms reveals that the center of the triple helix is, in fact, quite tightly packed. Indeed, the above hydrogen bonds pass very close to the center of the triple helix. This close packing accounts for the absolute requirement for a Gly at every third residue in a functional collagen molecule. Since, as you can see, the Gly Ca atoms are near the center of the triple helix, the side chain of any other residue at this position would, as we shall see below, significantly distort and hence destabilize the collagen triple helix.
The <scene name='Collagen/1cag_surface/4'>surface</scene> of the tropocollagen is shown with the Ala appearing as olive and the Pro and Hyp adjacent to the Ala appearing as dark brown. Notice that the surface at these Pro and Hyp bulges slightly.  This protrusion is due to the fact that the packing about the Ala side chains is not as close as it is about the Gly.  In the two side-by-side scenes shown below compare the amount of open space between the chains in the area of the scene center. In the [[1cag]] scene in the area of the Ala the distance between the chains is slightly greater than that of [[4clg]] scene.  


View5 and View6 show the side and top views of the triple helix segment containing an Ala on each chain instead of a Gly. The effect of replacing the Gly H atom side chain with a methyl group to form Ala, the smallest residue substitution possible, is quite striking. The interior of the collagen triple helix is too crowded to accommodate an Ala side chain without significant distortion. The triple helix in this region therefore unwinds and expands so that no H-bonds form in this region. The unwinding of the triple helix in the region about the Ala residues is, perhaps, best seen by returning to KINEMAGE above this one. You can see that the triple helix is bulged out in the center of View1. These conformational changes, which disrupt collagen's rope-like structure, are responsible for the symptoms of such human diseases as osteogenesis imperfecta and certain Ehlers-Danlos syndromes.
==3D structures of collagen==
[[Collagen 3D structures]]


</StructureSection>
__NOTOC__
<table width='100%' align='left' cellpadding='5'><tr><td rowspan='2'>&nbsp;</td><td bgcolor='#eeeeee'><Structure load='4clg' size='400' frame='true' align='left' name='id1' scene='Collagen/Glys_close_wf/1' /></td><td bgcolor='#eeeeee'><Structure load='1cag' size='400' frame='true' align='right' name='id2' scene='Collagen/1cag_ala_pack_wf/1' /></td></tr><tr><td bgcolor='#eeeeee'><center>'''Gly Packing in [[4clg]]'''&nbsp;(<scene name='Collagen/Glys_close_wf/1'> Initial scene</scene>)</center></td><td bgcolor='#eeeeee'><center>'''Ala Packing in [[1cag]] (Mutated Collagen)'''&nbsp;(<scene name='Collagen/1cag_ala_pack_wf/1'> Initial scene</scene>)</center></td></tr></table>




Exercise in large part by John H. Connor (present address: Department of Microbiology, Boston University School of Medicine, 850 Harrison Ave, Boston, MA, 02118, USA)
In order to convince yourself that there is a difference in the interchain distances in the area of the Ala, <scene name='Collagen/1cag_measurements/2'>show distances</scene> between Gly (Ala) and Pro which form intratropocollagen hydrogen bonds.  Hydrogen bonds are not formed between Ala and Pro because the distances between the atoms forming the bonds are too great.  The absence of the intratropocollagen hydrogen bonds, which is due to replacing Gly with a residue having a longer side chain, disrupts collagen's rope-like structure and is responsible for the symptoms of such human diseases as osteogenesis imperfecta and certain Ehlers-Danlos syndromes.


==Coordinates==
==References==
The coordinates for the collagen-like polypeptide were obtained from 1CAG.


{{Reflist}}


==External Links==
[http://www.mc.vanderbilt.edu/cmb/collagen/ Movies] of assembly of triple helix of type I and IV collagen.


{{Clear}}
== Contributor ==
==External Links==
Much of the content of this page was taken from an earlier non-Proteopedia version of Collagen which was in large part developed by '''Gretchen Heide Bisbort''', a 1999 graduate of Messiah College.
[http://www.mc.vanderbilt.edu/cmb/collagen/ Movies] of assembly of triple helix of type I and IV collagen.  


==Another Jmol tutorial==
[[Category:Topic Page]]
[http://www.messiah.edu/molscilab/Jmol/collagen/collagen_index.htm Tutorial] which illustrates and describes the 3D structure of collagen
[[pt:Collagen_(Portuguese)]]

Latest revision as of 12:03, 14 May 2019


Overview

Collagen, the most abundant protein in vertebrates, is an extracellular, inextensible fibrous protein that comprises the major protein component of such stress-bearing structures as bones, tendons, and ligaments. As with all fibrous proteins collagen is, for the most part, characterized by highly repetitive simple sequence. Here we study two model compounds (The structure of 4clg[1] is shown in the applet to the right.) for naturally occurring collagen, in order to develop an understanding of the fibrous portion of collagen and to show how the different levels of protein structure come together and form a highly ordered and stable fiber. Collagen's properties of rigidity and inextensibility are due to this highly ordered structure. The part of collagen without structural order is not illustrated in this model. This part of the protein complex having a different amino acid composition, lysine and hydroxylysine are particularly important residues, is globular in nature and not as structurally organized. Lysine and hydroxylysine form covalent crosslinks in the protein complex, thereby adding strength and some flexibility to the fiber. This covalent crosslinking continues throughout life and produces a more rigid collagen and brittle bones in older adults. Go to Collagen Structure & Function for information on the functions and disorders of collagen and a link in the External Links section of this page for assembly movies of the triple helix of types I and IV. See also Fibrous Proteins.

Structure of a Segment

A fiber segment is made up of 5 tropocollagens, each is shown in a . One limitation of this model of collagen segment is that instead of having flush cut ends as shown here, the ends of the tropocollagen in an actual fiber section would be . This staggered pattern is produced when the tropocollagens associate to form the fiber segment. The collagen fiber is constructed by connecting the segments together, and the presence of these staggered ends permits the tropocollagens from different segments to form strong attractions adding to the strength of the fiber. Add tropocollagens at a time to form the fiber section, , , , . View fiber segment as . Viewing the segment from the end one can see that without the side chains being displayed the center of the fiber is empty. Each contains 3 parallel peptide chains wrapped around one another to make a right-handed triple helix that is 87 Å long and ~10 Å in diameter. Tropocollagen displayed as only.

Lower Levels of Structure

Primary Structure of Peptide

of the peptide in wireframe display. Identify the amino acids making up the peptide by resting the cursor on a residue and observing the name in the label (Toggling spin off will make this easier.). Which three amino acids are present in the peptide in a reocurring pattern? Collagen is characterized by a distinctive repeating sequence: (Gly-X-Y)n where X is often Pro, Y is usually 5-hydroxyproline (Hyp), and n may be >300. The model (4clg) being studied here contains a of residues - Gly-Pro-Hyp. This sequence produces a conformation which is a with a rise 10.0 Å/turn or , the peptide is colored in three residue segments. the center axis of a segment of the helix. Since a helix with a larger rise is superimposed on the helix described above, the entire center axis does not align for viewing. The shows that the psi and phi angles of the collagen helix are different from the α-helix, which has a rise of 3.6. The two clusters shown here are outside of the area expected for an α-helix. Review where you would expect a cluster of α-helix residues to be located.

Other Levels of Structure

As shown above tropocollagen is formed by twisting around each other, and in doing so the peptides make (Cyan colored residues mark the approximate length of one turn.). mark the approximate distance of one turn of the peptides in a tropocollagen. Tropocollagen displayed as clearly shows both types of helical turns - the 3.3 residue/turn and ~21 residue/turn.

Looking down the axis of a tropocollagen displayed as wireframe, glycine can be seen of the triple helix. The two types of helical turns consistently positions the Gly in the center of the triple helix. Proline and the hydroxyproline are on the of the triple helix. With the hydroxyl group of Hyp extending to the surface of the triple helix, it can be involved in hydrogen bond formation, as will be seen in the next section. The cyclical side chains of Pro and Hyp are some what rigid, and this rigidity adds to the stability of the collagen fiber. The primary structure of repeating Gly-Pro-Hyp along with the two types of helical turns determine the 3D positions of Gly, Pro and Hyp in the tropocollagen.

In order to make a compact strong fiber the interior residues of the triple helix need to be close packed. The is the only one small enough to accommodate this close packing in the interior of the triple helix (realize that in this model the hydrogen on the α carbon is not displayed). , one on each of three different chains, are close packed together. The gray atoms of the yellow and lime Gly are the α-carbons, and only a hydrogen could fit between these carbons and the atoms of the adjacent Gly. on each of the 3 chains are shown close packed to the three Gly (lime, cyan, yellow). Adding the shows that Pro and Hyp are tightly positioned around the small interior Gly leaving no space for side chains longer than the single hydrogen of Gly.


Maintainance Forces

Intra-tropocollagen Attractions

Intra-tropocollagen attractions are primarily hydrogen bonds formed between the peptides in the triple helix. The three polypeptide chains are in position by one residue, that is, a Pro on Chain A is at the same level along the triple helix axis as a Gly on Chain B and a Hyp on Chain C. This staggered arrangement not only a Gly backbone NH (imino group) with a Pro backbone O (carbonyl oxygen) on one of the other peptides but also brings the two groups close enough so that a can form between the imino hydrogen and the carbonyl oxygen. This alignment occurs with Gly in each of the three peptides so that the Gly imino hydrogens of Chain A form (orange) with the Pro carbonyl oxygens on Chain B, and likewise Gly of (yellow) and Gly of (green). The force of all these hydrogen bonds extending the length of the tropocollagen add up to a strong attractive force which mantain the integrity of the tropocollagen. Since the main chain N atoms of both Pro and Hyp residues lack H atoms, only Gly can provide hydrogen to form these hydrogen bonds.


Inter-tropocollagen Attractions

Hydrogen bonds are also an important inter-tropocollagen force which holds the tropocollagens together in the fiber segment. As shown above, Hyp is the outer most residue on the of the triple helix, and the hydroxyl groups are the atoms that extend out the most from the surface. The hydrogen bonds are formed between the hydroxyl hydrogen of a Hyp and a backbone carbonyl oxygen. As the peptides in a tropocollagen twist about each other they come into with particular peptides in adjacent tropocollagens and then move away from them. The two peptide highlighted in spacefill are located in two different tropocollagens. Notice that in this case, they make contact with each other in the middle of the strands, and a hydrogen bond is located at this point of contact. The consist of the oxygen of a carbonyl of a Hyp in a peptide of one tropocollagen and the hydroxyl hydrogen of a Hyp in a peptide of another tropocollagen. Another example shows from two different tropocollagens making contact at the ends of the fiber segment, and of course it is within these regions where the inter-tropocollagen attractions occur. At one end a is formed between a hydrogen of Hyp in one peptide and an oxygen of a Gly carbonyl in the second peptide. At the other end of the two peptides a donates its electrons to a Hyp hydroxyl hydrogen. Show the in the context of the six peptides of the two tropocollagens. The above examples of hydrogen bonding illustrate that Hyp plays a central role in maintaining the structures of both the tropocollagen and the collagen fiber. Without the proper amount of vitamin C in their diets humans can not make Hyp, and therefore can not make stable collagen and strong bones.


Effect of a Mutation

The mutation being considered is an Ala replacing a Gly. Synthetic model PDB ID: 1cag[2] is whose peptides contain thirty residues and have a of (Pro-Hyp-Gly)4-Pro-Hyp-Ala-(Pro-Hyp-Gly)5 (Ala displayed as large wireframe and colored as C O N). Viewing 1cag from the side of the fiber shows: the is only partially visible because it is buried in the interior, being much more visible is positioned closer to the surface, being entirely on the surface is clearly visible, and being a substitute for Gly is only partially visible.

The of the tropocollagen is shown with the Ala appearing as olive and the Pro and Hyp adjacent to the Ala appearing as dark brown. Notice that the surface at these Pro and Hyp bulges slightly. This protrusion is due to the fact that the packing about the Ala side chains is not as close as it is about the Gly. In the two side-by-side scenes shown below compare the amount of open space between the chains in the area of the scene center. In the 1cag scene in the area of the Ala the distance between the chains is slightly greater than that of 4clg scene.

3D structures of collagen

Collagen 3D structures


Structure of Collagen (PDB entry 4clg or 1cag)

Drag the structure with the mouse to rotate
 

PDB ID 4clg

Drag the structure with the mouse to rotate

PDB ID 1cag

Drag the structure with the mouse to rotate
Gly Packing in 4clg ()
Ala Packing in 1cag (Mutated Collagen) ()


In order to convince yourself that there is a difference in the interchain distances in the area of the Ala, between Gly (Ala) and Pro which form intratropocollagen hydrogen bonds. Hydrogen bonds are not formed between Ala and Pro because the distances between the atoms forming the bonds are too great. The absence of the intratropocollagen hydrogen bonds, which is due to replacing Gly with a residue having a longer side chain, disrupts collagen's rope-like structure and is responsible for the symptoms of such human diseases as osteogenesis imperfecta and certain Ehlers-Danlos syndromes.

ReferencesReferences

  1. J.M. Chen, C.E. Kung, S.H. Feairheller, E.M. Brown, AN ENERGETIC EVALUATION OF A "SMITH" COLLAGEN MICROFIBRIL MODEL, J. Protein Chem., 10, 535, 1991
  2. J.BELLA,M.EATON,B.BRODSKY,H.M.BERMAN, CRYSTAL AND MOLECULAR STRUCTURE OF A COLLAGEN-LIKE PEPTIDE AT 1.9 A RESOLUTION. SCIENCE, 266, 75, 1994

External LinksExternal Links

Movies of assembly of triple helix of type I and IV collagen.

ContributorContributor

Much of the content of this page was taken from an earlier non-Proteopedia version of Collagen which was in large part developed by Gretchen Heide Bisbort, a 1999 graduate of Messiah College.

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

Ala Jelani, Karl Oberholser, Eran Hodis, Tilman Schirmer, Judy Voet, David Canner, Jaime Prilusky, Michal Harel, Alexander Berchansky, Eric Martz