P53-DNA Recognition: Difference between revisions

Jump to navigation Jump to search
No edit summary
Joel L. Sussman (talk | contribs)
No edit summary
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<StructureSection load='3kz8bio-4mon.pdb.zip' size='400' side='right' ' oldscene='Sandbox_Reserved_170/Complex/6' scene='P53-DNA_Recognition/P53_complex/1' caption=''>
{{BAMBED
|DATE=July 26, 2012
|OLDID=1472467
|BAMBEDDOI=10.1002/bmb.20650
}}
<StructureSection load='' size='400' side='right' ' oldscene='Sandbox_Reserved_170/Complex/6' scene='P53-DNA_Recognition/P53_complex/1' caption='Human p53 core complex with DNA (PDB code [[3kz8]]).'>
''This is a joint project of students at La Cañada High School, La Cañada Flintridge, California USA, and students at the University of Southern California, Los Angeles, California USA, mentored by [[User:Remo Rohs|Professor Remo Rohs]].''
''This is a joint project of students at La Cañada High School, La Cañada Flintridge, California USA, and students at the University of Southern California, Los Angeles, California USA, mentored by [[User:Remo Rohs|Professor Remo Rohs]].''


Line 24: Line 29:
The p53 protein consists of the N-terminal transactivation domain, the DNA binding domain ('''DBD''') or core, the tetramerization domain ([[#Tetramerization Domain|see its structure below]]), and the C-terminal regulatory domain ('''Figure 3'''). This Proteopedia page discusses protein-DNA recognition by p53, thus focusing on the DBD of p53 (<scene oldname='Sandbox_Reserved_170/Complex/6' name='P53-DNA_Recognition/P53_complex/1'>Figure 4: Crystal structure of p53 DBD tetramer-DNA complex</scene>, [[3kz8|PDB ID 3KZ8]]).
The p53 protein consists of the N-terminal transactivation domain, the DNA binding domain ('''DBD''') or core, the tetramerization domain ([[#Tetramerization Domain|see its structure below]]), and the C-terminal regulatory domain ('''Figure 3'''). This Proteopedia page discusses protein-DNA recognition by p53, thus focusing on the DBD of p53 (<scene oldname='Sandbox_Reserved_170/Complex/6' name='P53-DNA_Recognition/P53_complex/1'>Figure 4: Crystal structure of p53 DBD tetramer-DNA complex</scene>, [[3kz8|PDB ID 3KZ8]]).


The DBD in tetrameric form binds to a <font color="#e06000">'''DNA response element'''</font> (<scene oldname='Sandbox_Reserved_170/Complex/6' name='P53-DNA_Recognition/P53_complex/1'>restore initial scene</scene>), which consists of two DNA half sites. These decameric half sites can be separated by a DNA spacer of flexible length but in this case, the spacer is of length zero base pairs. The <scene oldname='Sandbox_Reserved_170/Complex/7' name='P53-DNA_Recognition/P53_complex/2'>p53 tetramer binds DNA as a dimer of dimers</scene> with each <font color='e000e0'>'''magenta'''</font>-<font color='00c0c0'>'''cyan'''</font> dimer binding to one half site of the response element<ref>Kitayner M, Rozenberg H, Kessler N, Rabinovich D, Shaulov L, Haran TE, Shakked Z. Structural basis of DNA recognition by p53 tetramers. Mol Cell. 2006 Jun 23;22(6):741-53. [http://www.ncbi.nlm.nih.gov/pubmed/16793544 PMID:16793544].</ref>.
The DBD in tetrameric form binds to a <font color="#e06000">'''DNA response element'''</font>, which consists of two DNA half sites. These decameric half sites can be separated by a DNA spacer of flexible length but in this case, the spacer is of length zero base pairs. The <scene oldname='Sandbox_Reserved_170/Complex/7' name='P53-DNA_Recognition/P53_complex/2'>p53 tetramer binds DNA as a dimer of dimers</scene> with each <font color='e000e0'>'''magenta'''</font>-<font color='00c0c0'>'''cyan'''</font> dimer binding to one half site of the response element<ref>Kitayner M, Rozenberg H, Kessler N, Rabinovich D, Shaulov L, Haran TE, Shakked Z. Structural basis of DNA recognition by p53 tetramers. Mol Cell. 2006 Jun 23;22(6):741-53. [http://www.ncbi.nlm.nih.gov/pubmed/16793544 PMID:16793544].</ref>.


The p53 DBD assumes the conformation of an <scene name='Sandbox_Reserved_170/Beta/1'>immunoglobulin-like fold consisting of a beta sandwich</scene>, which binds the response element in the major groove. A functionally important <scene name='Sandbox_Reserved_170/Zn/1'>Zn2+ ion coordinates the Cys176, His179, Cys238, Cys242 residues</scene> and, thus, stabilizes the fold of the DBD.
The p53 DBD assumes the conformation of an <scene name='Sandbox_Reserved_170/Beta/1'>immunoglobulin-like fold consisting of a beta sandwich</scene>, which binds the response element in the major groove. A functionally important <scene name='Sandbox_Reserved_170/Zn/1'>Zn2+ ion coordinates the Cys176, His179, Cys238, Cys242 residues</scene> and, thus, stabilizes the fold of the DBD.
Line 58: Line 63:
==Tetramerization Domain==
==Tetramerization Domain==


<scene name='Sandbox_Reserved_170/Tetra/2'>Figure 7: Crystal structure of p53 tetramerization domain</scene>, ([[1c26|PDB ID 1C26]])
Aside from the DBD, the only other domain for which structural information is available is the ''tetramerization domain'' [<scene name='Sandbox_Reserved_170/Tetra/2'>Figure 7: Crystal structure of p53 tetramerization domain</scene>, ([[1c26|PDB ID 1C26]])], which forms as a dimer of dimers with one alpha helix and one beta strand contributed by each p53 monomer. The tetramerization domain is ''not present'' in the crystal structure of the DBD (<scene oldname='Sandbox_Reserved_170/Complex/6' name='P53-DNA_Recognition/P53_complex/1'>Figure 4: Crystal structure of p53 DBD tetramer-DNA complex</scene>).
 
Aside from the DBD, the only other domain for which structural information is available is the ''tetramerization domain'' ['''Figure 7''', <scene name='Sandbox_Reserved_170/Tetra/2'>restore initial scene</scene>], which forms as a dimer of dimers with one alpha helix and one beta strand contributed by each p53 monomer. The tetramerization domain is ''not present'' in the crystal structure of the DBD (Figure 4).


=Further Reading=
=Further Reading=
Line 77: Line 80:
A more general discussion of structural origins of binding specificity in protein-DNA recognition has been published along with a suggestion for a new '''classification of protein-DNA readout modes''' that goes beyond the historical description of direct and indirect readout<ref name="annualreview">Rohs R, Jin X, West SM, Joshi R, Honig B, Mann RS. Origins of specificity in protein-DNA recognition. Annu Rev Biochem. 2010;79:233-69. [http://www.ncbi.nlm.nih.gov/pubmed/20334529 PMID:20334529].</ref>.<br/>
A more general discussion of structural origins of binding specificity in protein-DNA recognition has been published along with a suggestion for a new '''classification of protein-DNA readout modes''' that goes beyond the historical description of direct and indirect readout<ref name="annualreview">Rohs R, Jin X, West SM, Joshi R, Honig B, Mann RS. Origins of specificity in protein-DNA recognition. Annu Rev Biochem. 2010;79:233-69. [http://www.ncbi.nlm.nih.gov/pubmed/20334529 PMID:20334529].</ref>.<br/>
</StructureSection>
</StructureSection>
__NOTOC__
=3D structures of p53=
[[P53]]


=Acknowledgements=
=Acknowledgements=
Line 84: Line 88:
=References=
=References=
<references/>
<references/>
[[Category:Featured in BAMBED]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

Jaime Prilusky, Remo Rohs, Bailey Holmes, Ana Carolina Dantas Machado, Eran Hodis, Julia Tam, Masha Karelina, Sharon Kim, Skyler Saleebyan, Keziah Kim, Joseph M. Steinberger, Eric Martz, Alexander Berchansky, Michal Harel, Angel Herraez, Joel L. Sussman