MT1-MMP-TIMP-1 complex: Difference between revisions

No edit summary
Michal Harel (talk | contribs)
No edit summary
 
(34 intermediate revisions by 2 users not shown)
Line 1: Line 1:
[[Image:M3.png|left|300px|thumb|MT1-MMP-TIMP-1 complex]]
<StructureSection load='M1.pdb' size='350' side='right' scene='MT1-MMP-TIMP-1_complex/Cv2/8' caption=''>
{{STRUCTURE_3ma2|  PDB=3ma2  |  SCENE=MT1-MMP-TIMP-1_complex/Cv/2  }}


{{Clear}}
===Complex membrane type-1 matrix metalloproteinase (MT1-MMP) with tissue inhibitor of metalloproteinase-1 (TIMP-1)===
===Complex membrane type-1 matrix metalloproteinase (MT1-MMP) with tissue inhibitor of metalloproteinase-1 (TIMP-1)===
{{ABSTRACT_PUBMED_20545310}}
{{ABSTRACT_PUBMED_20545310}}
The human matrix metalloproteinases (MMPs) family comprises a large group of structurally homologous zinc-dependent endopeptidases (''e.g.'' <scene name='MT1-MMP-TIMP-1_complex/Cv2/9'>membrane type-1 matrix metalloproteinase (MT1-MMP)</scene> <font color='darkmagenta'><b>(darkmagenta)</b></font> and <scene name='MT1-MMP-TIMP-1_complex/Cv/14'>membrane type-3 matrix metalloproteinase (MT3-MMP)</scene> <font color='magenta'><b>(magenta)</b></font>, <scene name='MT1-MMP-TIMP-1_complex/Cv2/10'>click to see structural comparison</scene>) that perform a wide variety of biological roles. In general, the MMPs are inhibited unselectively by all four known tissue inhibitors of metalloproteinases (TIMPs 1-4) which have 40-50% sequence identity. For example, <scene name='MT1-MMP-TIMP-1_complex/Cv/14'>membrane type-3 matrix metalloproteinase (MT3-MMP)</scene> can form complex with <scene name='MT1-MMP-TIMP-1_complex/Cv/12'>wild-type TIMP-1</scene> ([[1uea]], <font color='orange'><b>colored orange</b></font>). <scene name='MT1-MMP-TIMP-1_complex/Cv/13'>The WT-TIMP-1 binding interface</scene> <font color='cyan'><b>(cyan)</b></font> is mainly composed of the N-terminal segment that approaches the active site, the AB loop (Thr33-Tyr35), the CD loop (Ala65-Cys70), and the EF loop (Thr97-Ser100). The pivotal residue, threonine 98 (Thr98), is shown as <font color='red'><b>red sticks</b></font>. In general, <scene name='MT1-MMP-TIMP-1_complex/Cv1/2'>five main chain hydrogen bonds</scene> (Cys1-Ser68, Val69-Met66, Gly71-Met66, Cys70-Glu67, and Cys70-Thr98) are intimately involved in the conformational stability of TIMP binding interface when bound to MMP.
<scene name='MT1-MMP-TIMP-1_complex/Cv2/9'>Membrane type-1 matrix metalloproteinase (MT1-MMP)</scene> <font color='darkmagenta'><b>(darkmagenta)</b></font> also forms complex with <scene name='MT1-MMP-TIMP-1_complex/Cv2/11'>wild-type TIMP-1</scene> ([[2j0t]], <font color='orange'><b>colored orange</b></font>), producing <scene name='MT1-MMP-TIMP-1_complex/Cv2/12'>similar hydrogen bond network in the WT TIMP-1 binding interface</scene> as well as <scene name='MT1-MMP-TIMP-1_complex/Cv2/13'>in the case with MT3-MMP</scene>. This network of hydrogen bonds stabilizes the CD and EF loops that compose the binding interface. Importantly, the <scene name='MT1-MMP-TIMP-1_complex/Cv2/14'>hydrogen bond between Cys1 and Ser68 may position the amino and carboxyl groups of Cys1 to effectively coordinate the Zn2+ ion</scene>. However, this MT1-MMP-WT-TIMP-1 complex is not tight-binding. MT1-MMP is unique since even though it exhibits high structural homology to all MMPs, it is not inhibited by TIMP-1, <scene name='MT1-MMP-TIMP-1_complex/Cv3/1'>but is inhibited by the structural homologous TIMP-2</scene> ([[1bqq]]). <scene name='MT1-MMP-TIMP-1_complex/Cv2/15'>The single point mutation T98L</scene> (mutant TIMP-1 is colored in <span style="color:yellow;background-color:black;font-weight:bold;">yellow</span> with <font color='red'><b>T98L shown in red</b></font>) transformed TIMP-1 into a high affinity inhibitor of MT1-MMP ([[3ma2]]). WT-TIMP-1, WT-TIMP-2, and TIMP-1 T98L mutant have kinetic dissociation binding constant (K<sub>D</sub>) 1.53 x 10<sup>-6</sup>, 5.61 x 10<sup>-8</sup>, and 8.70 x 10<sup>-8</sup>, respectively. So, K<sub>D</sub> of WT-TIMP-2 is 2 orders of magnitude smaller than that of WT-TIMP-1, indicating the weak affinity between MT1-MMP and WT-TIMP-1. The TIMP-1 T98L mutant regained high-affinity binding to MT1-MMP, resulting in a 2 order of magnitude decrease in K<sub>D</sub>, similar to the case for WT-TIMP-2, the ''in vivo'' inhibitor of MT1-MMP. The overall structures of the complexes of <font color='darkmagenta'><b>MT1-MMP</b></font>-<font color='orange'><b>WT-TIMP-1</b></font> and <font color='violet'><b>MT1-MMP</b></font>-<span style="color:yellow;background-color:black;font-weight:bold;">mutant-T98L-TIMP-1</span> are <scene name='MT1-MMP-TIMP-1_complex/Cv2/17'>relatively similar</scene>. Even the structure of <font color='magenta'><b>MT3-MMP</b></font>-<font color='orange'><b>WT-TIMP-1</b></font> is <scene name='MT1-MMP-TIMP-1_complex/Cv2/18'>similar to those of MT1-MMP-TIMP-1s</scene> (with <font color='orange'><b>wild-type</b></font> and <span style="color:yellow;background-color:black;font-weight:bold;">TIMP-1 T98L mutant</span>). <scene name='MT1-MMP-TIMP-1_complex/Cv4/1'>Leu98 is pointing toward MT1-MMP residues Pro259 and Phe260, establishing a strong hydrophobic core</scene>, which is situated near the MT1-MMP <scene name='MT1-MMP-TIMP-1_complex/Cv4/3'>catalytic Zn2+ ion surrounded by His239, His243, and His249</scene>. So, this T98L replacement may stabilize the entire area by establishing a strong hydrophobic core upon binding to the enzyme. However, it seems unlikely that these additional bonds could
account for the entire binding effect between MT1-MMP and TIMP-1. Statistical analysis of the <scene name='MT1-MMP-TIMP-1_complex/Cv2/15'>key hydrogen bond</scene> stabilities in the TIMP-1 T98L mutant reveals that the hydrogen bonds network in mutant form is significantly more stable than that in WT-TIMP-1. Mutations that enhance hydrogen
bond stability contribute to the stability of the bound-like, less flexible, conformation of TIMP-1, which eventually results in increasing binding affinity for MT1-MMP. Thus, mutation affected the instrinsic dynamics of the inhibitor rather than its structure, thereby facilitating the interaction. 
 


<StructureSection load='M1.pdb' size='500' side='right' scene='MT1-MMP-TIMP-1_complex/Cv2/8' caption=''>


The human matrix metalloproteinases (MMPs) family comprises a large group of structurally homologous zinc-dependent endopeptidases (''e.g.'' <scene name='MT1-MMP-TIMP-1_complex/Cv2/9'>membrane type-1 matrix metalloproteinase (MT1-MMP)</scene> <font color='darkmagenta'><b>(darkmagenta)</b></font> and <scene name='MT1-MMP-TIMP-1_complex/Cv/9'>membrane type-3 matrix metalloproteinase (MT3-MMP)</scene> <font color='magenta'><b>(magenta)</b></font>, <scene name='MT1-MMP-TIMP-1_complex/Cv2/10'>click to see structural comparison</scene>) that perform a wide variety of biological roles. The MMPs are in general inhibited unselectively by all 4 known tissue inhibitors of metalloproteinases (TIMPs 1-4). Currently, 4 TIMPs variants that are 40-50% identical in sequence have been identified, namely TIMPs-1-4. In general, the MMPs are  inhibited unselectively by all 4 known TIMPs 1-4. For example, <scene name='MT1-MMP-TIMP-1_complex/Cv/9'>membrane type-3 matrix metalloproteinase (MT3-MMP)</scene> can form complex with <scene name='MT1-MMP-TIMP-1_complex/Cv/12'>wild-type TIMP-1</scene> ([[1uea]], <font color='orange'><b>colored orange</b></font>). <scene name='MT1-MMP-TIMP-1_complex/Cv/13'>The WT-TIMP-1 binding interface</scene> <font color='cyan'><b>(cyan)</b></font> is mainly composed of the N-terminal segment that approaches the active site, the AB loop (Thr33-Tyr35), the CD loop (Ala65-Cys70), and the EF loop (Thr97-Ser100). The pivotal residue, threonine 98 (Thr98), is shown as <font color='red'><b>red sticks</b></font>. In general, <scene name='MT1-MMP-TIMP-1_complex/Cv1/2'>five main chain hydrogen bonds</scene> (Cys1-Ser68, Val69-Met66, Gly71-Met66, Cys70-Glu67, and Cys70-Thr98) are intimately involved in the conformational stability of TIMP binding interface when bound to MMP.
</StructureSection>
<scene name='MT1-MMP-TIMP-1_complex/Cv2/9'>Membrane type-1 matrix metalloproteinase (MT1-MMP)</scene> <font color='darkmagenta'><b>(darkmagenta)</b></font> also forms complex with <scene name='MT1-MMP-TIMP-1_complex/Cv2/11'>wild-type TIMP-1</scene> ([[2j0t]], <font color='orange'><b>colored orange</b></font>), producing <scene name='MT1-MMP-TIMP-1_complex/Cv2/12'>similar hydrogen bond network in the WT TIMP-1 binding interface</scene> as well as <scene name='MT1-MMP-TIMP-1_complex/Cv2/13'>in the case with MT3-MMP</scene>. This network of hydrogen bonds stabilizes
theCDandEFloops that compose the binding interface. Importantly,
the hydrogen bond between Cys1 and Ser68 may position
the amino and carboxyl groups of Cys1 to effectively coordinate
the Zn2þ
ion.


== 3D structures of MMP==


</StructureSection>
[[Matrix metalloproteinase]]


<references/>
==Reference==
<ref group="xtra">PMID:20545310</ref><references group="xtra"/>
[[Category: Homo sapiens]]
[[Category: Membrane-type matrix metalloproteinase-1]]
[[Category: Dym, O.]]
[[Category: Grossman, M.]]
[[Category: Lee, M-H.]]
[[Category: Levy, Y.]]
[[Category: Sagi, I.]]
[[Category: Tworowski, D.]]
[[Category: Cleavage on pair of basic residue]]
[[Category: Disulfide bond]]
[[Category: Erythrocyte maturation]]
[[Category: Glycoprotein]]
[[Category: Hydrolase-hydrolase inhibitor complex]]
[[Category: Membrane]]
[[Category: Metal-binding]]
[[Category: Metalloenzyme inhibitor]]
[[Category: Metalloprotease]]
[[Category: Metalloprotease inhibitor]]
[[Category: Protease]]
[[Category: Protein - protein complex]]
[[Category: Secreted]]
[[Category: Transmembrane]]
[[Category: Zymogen]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

Alexander Berchansky, Michal Harel