Identification of chloride ions in lysozyme at long wavelengthsIdentification of chloride ions in lysozyme at long wavelengths

Structural highlights

9gcv is a 1 chain structure with sequence from Gallus gallus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.703Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

LYSC_CHICK Lysozymes have primarily a bacteriolytic function; those in tissues and body fluids are associated with the monocyte-macrophage system and enhance the activity of immunoagents. Has bacteriolytic activity against M.luteus.[1]

Publication Abstract from PubMed

AlphaFold2 has revolutionized structural biology by offering unparalleled accuracy in predicting protein structures. Traditional methods for determining protein structures, such as X-ray crystallography and cryo-electron microscopy, are often time-consuming and resource-intensive. AlphaFold2 provides models that are valuable for molecular replacement, aiding in model building and docking into electron density or potential maps. However, despite its capabilities, models from AlphaFold2 do not consistently match the accuracy of experimentally determined structures, need to be validated experimentally and currently miss some crucial information, such as post-translational modifications, ligands and bound ions. In this paper, the advantages are explored of collecting X-ray anomalous data to identify chemical elements, such as metal ions, which are key to understanding certain structures and functions of proteins. This is achieved through methods such as calculating anomalous difference Fourier maps or refining the imaginary component of the anomalous scattering factor f. Anomalous data can serve as a valuable complement to the information provided by AlphaFold2 models and this is particularly significant in elucidating the roles of metal ions.

Utilizing anomalous signals for element identification in macromolecular crystallography.,El Omari K, Forsyth I, Duman R, Orr CM, Mykhaylyk V, Mancini EJ, Wagner A Acta Crystallogr D Struct Biol. 2024 Oct 1;80(Pt 10):713-721. doi: , 10.1107/S2059798324008659. Epub 2024 Sep 18. PMID:39291627[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Maehashi K, Matano M, Irisawa T, Uchino M, Kashiwagi Y, Watanabe T. Molecular characterization of goose- and chicken-type lysozymes in emu (Dromaius novaehollandiae): evidence for extremely low lysozyme levels in emu egg white. Gene. 2012 Jan 15;492(1):244-9. doi: 10.1016/j.gene.2011.10.021. Epub 2011 Oct, 25. PMID:22044478 doi:10.1016/j.gene.2011.10.021
  2. El Omari K, Forsyth I, Duman R, Orr CM, Mykhaylyk V, Mancini EJ, Wagner A. Utilizing anomalous signals for element identification in macromolecular crystallography. Acta Crystallogr D Struct Biol. 2024 Oct 1;80(Pt 10):713-721. PMID:39291627 doi:10.1107/S2059798324008659

9gcv, resolution 2.70Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA