9fza
TEAD1/YAP in complex with a reversible inhibitor N-[(4-phenoxyphenyl)methyl]imidazo[1,2-a]pyridine-3-carboxamideTEAD1/YAP in complex with a reversible inhibitor N-[(4-phenoxyphenyl)methyl]imidazo[1,2-a]pyridine-3-carboxamide
Structural highlights
DiseaseTEAD1_HUMAN Defects in TEAD1 are the cause of Sveinsson chorioretinal atrophy (SCRA) [MIM:108985; also known as atrophia areata (AA) or helicoidal peripapillary chorioretinal degeneration (HPCD). SCRA is characterized by symmetrical lesions radiating from the optic disk involving the retina and the choroid.[1] [2] [3] FunctionTEAD1_HUMAN Transcription factor which plays a key role in the Hippo signaling pathway, a pathway involved in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein MST1/MST2, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Acts by mediating gene expression of YAP1 and WWTR1/TAZ, thereby regulating cell proliferation, migration and epithelial mesenchymal transition (EMT) induction. Binds specifically and cooperatively to the SPH and GT-IIC 'enhansons' (5'-GTGGAATGT-3') and activates transcription in vivo in a cell-specific manner. The activation function appears to be mediated by a limiting cell-specific transcriptional intermediary factor (TIF). Involved in cardiac development. Binds to the M-CAT motif.[4] [5] Publication Abstract from PubMedThe Transcriptional Enhanced Associated Domain (TEAD) family of transcription factors are key components of the Hippo signalling family which play a crucial role in the regulation of cell proliferation, differentiation and apoptosis. The identification of inhibitors of the TEAD transcription factors are an attractive strategy for the development of novel anticancer therapies. A HTS campaign identified hit 1, which was optimised using structure-based drug design, to deliver potent TEAD1 selective inhibitors with both a reversible and covalent mode of inhibition. The preference for TEAD1 could be rationalised by steric differences observed in the lower pocket of the palmitoylation-site between subtypes, with TEAD1 having the largest available volume to accommodate substitution in this region. Discovery of reversible and covalent TEAD 1 selective inhibitors MSC-1254 and MSC-5046 based on one scaffold.,Carswell E, Heinrich T, Petersson C, Gunera J, Garg S, Schwarz D, Schlesiger S, Fischer F, Eichhorn T, Calder M, Smith G, MacDonald E, Wilson H, Hazel K, Trivier E, Broome R, Balsiger A, Sirohi S, Musil D, Freire F, Schilke H, Dillon C, Wienke D Bioorg Med Chem Lett. 2024 Oct 4:129981. doi: 10.1016/j.bmcl.2024.129981. PMID:39369801[6] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|