Voltage-gated sodium channel Nav1.7 variant M2Voltage-gated sodium channel Nav1.7 variant M2

Structural highlights

8xmn is a 3 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Electron Microscopy, Resolution 3.37Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Publication Abstract from PubMed

Voltage-gated sodium channels (Na(v)) undergo conformational shifts in response to membrane potential changes, a mechanism known as the electromechanical coupling. To delineate the structure-function relationship of human Na(v) channels, we have performed systematic structural analysis using human Na(v)1.7 as a prototype. Guided by the structural differences between wild-type (WT) Na(v)1.7 and an eleven mutation-containing variant, designated Na(v)1.7-M11, we generated three additional intermediate mutants and solved their structures at overall resolutions of 2.9-3.4 A. The mutant with nine-point mutations in the pore domain (PD), named Na(v)1.7-M9, has a reduced cavity volume and a sealed gate, with all voltage-sensing domains (VSDs) remaining up. Structural comparison of WT and Na(v)1.7-M9 pinpoints two residues that may be critical to the tightening of the PD. However, the variant containing these two mutations, Na(v)1.7-M2, or even in combination with two additional mutations in the VSDs, named Na(v)1.7-M4, failed to tighten the PD. Our structural analysis reveals a tendency of PD contraction correlated with the right shift of the static inactivation I-V curves. We predict that the channel in the resting state should have a "tight" PD with down VSDs.

Dissection of the structure-function relationship of Na(v) channels.,Li Z, Wu Q, Huang G, Jin X, Li J, Pan X, Yan N Proc Natl Acad Sci U S A. 2024 Feb 27;121(9):e2322899121. doi: , 10.1073/pnas.2322899121. Epub 2024 Feb 21. PMID:38381792[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Li Z, Wu Q, Huang G, Jin X, Li J, Pan X, Yan N. Dissection of the structure-function relationship of Na(v) channels. Proc Natl Acad Sci U S A. 2024 Feb 27;121(9):e2322899121. PMID:38381792 doi:10.1073/pnas.2322899121

8xmn, resolution 3.37Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA