Co-crystal structure of PD-L1 with low molecular weight inhibitorCo-crystal structure of PD-L1 with low molecular weight inhibitor

Structural highlights

8p64 is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3.312Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Publication Abstract from PubMed

The progress in cancer survival and treatment has witnessed a remarkable transformation through the innovative approach of targeting the inhibitory immune checkpoint protein PD-1/PD-L1 complex by mAbs, e.g. pembrolizumab (Keytruda). While generating 17.2 billion U.S. dollars in revenue in 2021, the true significance of these developments lies in their ability to enhance cancer patient outcomes. Despite the proven efficacy of mAbs in inhibiting the PD-1/PD-L1 signaling pathways, they face significant challenges, including limited response rates, high production costs, missing oral bioavailability, and extended half-lives that can lead to immune-related adverse effects. A promising alternative approach involves the use of small molecules acting as PD-1/PD-L1 antagonists to stimulate PD-L1 dimerization. However, the precise mechanisms of action of these molecules remain partially understood, posing challenges to their development. In this context, our research focuses on the creation of a novel scaffold based on the Ugi tetrazole four-component reaction (UT-4CR) to develop low-molecular-weight inhibitors of PD-L1. Employing structure-based methods, we synthesized a library of small compounds using biphenyl vinyl isocyanide, leading to the discovery of a structure-activity relationship among 1,5-disubstituted tetrazole-based inhibitors. Supported by a cocrystal structure with PD-L1, these inhibitors underwent biophysical testing, including HTRF and protein NMR experiments, resulting in the identification of potent candidates with sub-micromolar PD-L1 affinities. This finding opens opportunities to the further development of a new class of PD-L1 antagonists, holding promise for improved cancer immunotherapy strategies.

1,5-Disubstituted tetrazoles as PD-1/PD-L1 antagonists.,van der Straat R, Draijer R, Surmiak E, Butera R, Land L, Magiera-Mularz K, Musielak B, Plewka J, Holak TA, Domling A RSC Med Chem. 2024 Feb 21;15(4):1210-1215. doi: 10.1039/d3md00746d. eCollection , 2024 Apr 24. PMID:38665826[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. van der Straat R, Draijer R, Surmiak E, Butera R, Land L, Magiera-Mularz K, Musielak B, Plewka J, Holak TA, Dömling A. 1,5-Disubstituted tetrazoles as PD-1/PD-L1 antagonists. RSC Med Chem. 2024 Feb 21;15(4):1210-1215. PMID:38665826 doi:10.1039/d3md00746d

8p64, resolution 3.31Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA