Crystal structure of DNA decamer containing GuNA[Me,tBu]Crystal structure of DNA decamer containing GuNA[Me,tBu]

Structural highlights

8his is a 2 chain structure with sequence from Synthetic construct. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.01Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Publication Abstract from PubMed

Antisense oligonucleotides (ASOs) are becoming a promising class of drugs for treating various diseases. Over the past few decades, many modified nucleic acids have been developed for application to ASOs, aiming to enhance their duplex-forming ability toward cognate mRNA and improve their stability against enzymatic degradations. Modulating the sugar conformation of nucleic acids by substituting an electron-withdrawing group at the 2'-position or incorporating a 2',4'-bridging structure is a common approach for enhancing duplex-forming ability. Here, we report on incorporating an N-tert-butylguanidinium group at the 2',4'-bridging structure, which greatly enhances duplex-forming ability because of its interactions with the minor groove. Our results indicated that hydrophobic substituents fitting the grooves of duplexes also have great potential to increase duplex-forming ability.

Mechanism of the extremely high duplex-forming ability of oligonucleotides modified with N-tert-butylguanidine- or N-tert-butyl-N'-methylguanidine-bridged nucleic acids.,Yamaguchi T, Horie N, Aoyama H, Kumagai S, Obika S Nucleic Acids Res. 2023 Jul 18:gkad608. doi: 10.1093/nar/gkad608. PMID:37462081[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Yamaguchi T, Horie N, Aoyama H, Kumagai S, Obika S. Mechanism of the extremely high duplex-forming ability of oligonucleotides Nucleic Acids Res. 2023 Jul 18:gkad608. PMID:37462081 doi:10.1093/nar/gkad608

8his, resolution 2.01Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA