The von Willebrand factor A domain of human capillary morphogenesis gene II, flexibly fused to the 1TEL crystallization chaperone, Thr-Val linker variant, Expressed with SUMO tagThe von Willebrand factor A domain of human capillary morphogenesis gene II, flexibly fused to the 1TEL crystallization chaperone, Thr-Val linker variant, Expressed with SUMO tag

Structural highlights

8fzu is a 3 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.9Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

ETV6_HUMAN Note=A chromosomal aberration involving ETV6 is found in a form of chronic myelomonocytic leukemia (CMML). Translocation t(5;12)(q33;p13) with PDGFRB. It is characterized by abnormal clonal myeloid proliferation and by progression to acute myelogenous leukemia (AML).[1] Note=Chromosomal aberrations involving ETV6 are found in a form of acute myeloid leukemia (AML). Translocation t(12;22)(p13;q11) with MN1; translocation t(4;12)(q12;p13) with CHIC2.[2] [3] [4] Note=Chromosomal aberrations involving ETV6 are found in childhood acute lymphoblastic leukemia (ALL). Translocations t(12;21)(p12;q22) and t(12;21)(p13;q22) with RUNX1/AML1. Note=A chromosomal aberration involving ETV6 is found in a form of pre-B acute myeloid leukemia. Translocation t(9;12)(p24;p13) with JAK2. Note=A chromosomal aberration involving ETV6 is found in myelodysplastic syndrome (MDS) with basophilia. Translocation t(5;12)(q31;p13) with ACSL6. Note=A chromosomal aberration involving ETV6 is found in acute eosinophilic leukemia (AEL). Translocation t(5;12)(q31;p13) with ACSL6. Note=A chromosomal aberration involving ETV6 is found in myelodysplastic syndrome (MDS). Translocation t(1;12)(p36.1;p13) with MDS2. Defects in ETV6 are a cause of myeloproliferative disorder chronic with eosinophilia (MPE) [MIM:131440. A hematologic disorder characterized by malignant eosinophils proliferation. Note=A chromosomal aberration involving ETV6 is found in many instances of myeloproliferative disorder chronic with eosinophilia. Translocation t(5;12) with PDGFRB on chromosome 5 creating an ETV6-PDGFRB fusion protein. Defects in ETV6 are a cause of acute myelogenous leukemia (AML) [MIM:601626. AML is a malignant disease in which hematopoietic precursors are arrested in an early stage of development.[5] [6] [7] Note=A chromosomal aberration involving ETV6 is found in acute lymphoblastic leukemia. Translocation t(9;12)(p13;p13) with PAX5.ANTR2_HUMAN Defects in ANTXR2 are the cause of infantile systemic hyalinosis (ISH) [MIM:236490. This autosomal recessive syndrome is similar to JHF, but has an earlier onset and a more severe course. Symptoms appear at birth or within the first months of life, with painful, swollen joint contractures, osteopenia, osteoporosis and livid red hyperpigmentation over bony prominences. Patients develop multiple subcutaneous skin tumors and gingival hypertrophy. Hyaline deposits in multiple organs, recurrent infections and intractable diarrhea often lead to death within the first 2 years of life. Surviving children may suffer from severely reduced mobility due to joint contractures.[8] [9] Defects in ANTXR2 are the cause of juvenile hyaline fibromatosis (JHF) [MIM:228600. JHF is an autosomal recessive syndrome that is similar to ISH but takes a milder course. It is characterized by hyaline deposition in the dermis, multiple subcutaneous skin tumors and gingival hypertrophy, followed by progressive joint contractions, osteopenia and osteoporosis that may lead to a severe limitation of mobility.[10] [11]

Function

ETV6_HUMAN Transcriptional repressor; binds to the DNA sequence 5'-CCGGAAGT-3'.ANTR2_HUMAN Necessary for cellular interactions with laminin and the extracellular matrix.[12] [13]

Publication Abstract from PubMed

TELSAM crystallization promises to become a revolutionary tool for the facile crystallization of proteins. TELSAM can increase the rate of crystallization and form crystals at low protein concentrations without direct contact between TELSAM polymers and, in some cases, with very minimal crystal contacts overall (Nawarathnage et al ., 2022). To further understand and characterize TELSAM-mediated crystallization, we sought to understand the requirements for the composition of the linker between TELSAM and the fused target protein. We evaluated four different linkers Ala-Ala, Ala-Val, Thr-Val, and Thr-Thr, between 1TEL and the human CMG2 vWa domain. We compared the number of successful crystallization conditions, the number of crystals, the average and best diffraction resolution, and the refinement parameters for the above constructs. We also tested the effect of the fusion protein SUMO on crystallization. We discovered that rigidification of the linker improved diffraction resolution, likely by decreasing the number of possible orientations of the vWa domains in the crystal, and that omitting the SUMO domain from the construct also improved the diffraction resolution. SYNOPSIS: We demonstrate that the TELSAM protein crystallization chaperone can enable facile protein crystallization and high-resolution structure determination. We provide evidence to support the use of short but flexible linkers between TELSAM and the protein of interest and to support the avoidance of cleavable purification tags in TELSAM-fusion constructs.

Decreasing the flexibility of the TELSAM-target protein linker and omitting the cleavable fusion tag improves crystal order and diffraction limits.,Gajjar PL, Romo MJP, Litchfield CM, Callahan M, Redd N, Nawarathnage S, Soleimani S, Averett J, Wilson E, Lewis A, Stewart C, Tseng YJ, Doukov T, Lebedev A, Moody JD bioRxiv. 2023 May 15:2023.05.12.540586. doi: 10.1101/2023.05.12.540586. Preprint. PMID:37293010[14]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Odero MD, Vizmanos JL, Roman JP, Lahortiga I, Panizo C, Calasanz MJ, Zeleznik-Le NJ, Rowley JD, Novo FJ. A novel gene, MDS2, is fused to ETV6/TEL in a t(1;12)(p36.1;p13) in a patient with myelodysplastic syndrome. Genes Chromosomes Cancer. 2002 Sep;35(1):11-9. PMID:12203785 doi:10.1002/gcc.10090
  2. Golub TR, Barker GF, Bohlander SK, Hiebert SW, Ward DC, Bray-Ward P, Morgan E, Raimondi SC, Rowley JD, Gilliland DG. Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proc Natl Acad Sci U S A. 1995 May 23;92(11):4917-21. PMID:7761424
  3. Romana SP, Mauchauffe M, Le Coniat M, Chumakov I, Le Paslier D, Berger R, Bernard OA. The t(12;21) of acute lymphoblastic leukemia results in a tel-AML1 gene fusion. Blood. 1995 Jun 15;85(12):3662-70. PMID:7780150
  4. Barjesteh van Waalwijk van Doorn-Khosrovani S, Spensberger D, de Knegt Y, Tang M, Lowenberg B, Delwel R. Somatic heterozygous mutations in ETV6 (TEL) and frequent absence of ETV6 protein in acute myeloid leukemia. Oncogene. 2005 Jun 9;24(25):4129-37. PMID:15806161 doi:10.1038/sj.onc.1208588
  5. Golub TR, Barker GF, Bohlander SK, Hiebert SW, Ward DC, Bray-Ward P, Morgan E, Raimondi SC, Rowley JD, Gilliland DG. Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proc Natl Acad Sci U S A. 1995 May 23;92(11):4917-21. PMID:7761424
  6. Romana SP, Mauchauffe M, Le Coniat M, Chumakov I, Le Paslier D, Berger R, Bernard OA. The t(12;21) of acute lymphoblastic leukemia results in a tel-AML1 gene fusion. Blood. 1995 Jun 15;85(12):3662-70. PMID:7780150
  7. Barjesteh van Waalwijk van Doorn-Khosrovani S, Spensberger D, de Knegt Y, Tang M, Lowenberg B, Delwel R. Somatic heterozygous mutations in ETV6 (TEL) and frequent absence of ETV6 protein in acute myeloid leukemia. Oncogene. 2005 Jun 9;24(25):4129-37. PMID:15806161 doi:10.1038/sj.onc.1208588
  8. Dowling O, Difeo A, Ramirez MC, Tukel T, Narla G, Bonafe L, Kayserili H, Yuksel-Apak M, Paller AS, Norton K, Teebi AS, Grum-Tokars V, Martin GS, Davis GE, Glucksman MJ, Martignetti JA. Mutations in capillary morphogenesis gene-2 result in the allelic disorders juvenile hyaline fibromatosis and infantile systemic hyalinosis. Am J Hum Genet. 2003 Oct;73(4):957-66. Epub 2003 Sep 12. PMID:12973667 doi:http://dx.doi.org/S0002-9297(07)63642-8
  9. Hanks S, Adams S, Douglas J, Arbour L, Atherton DJ, Balci S, Bode H, Campbell ME, Feingold M, Keser G, Kleijer W, Mancini G, McGrath JA, Muntoni F, Nanda A, Teare MD, Warman M, Pope FM, Superti-Furga A, Futreal PA, Rahman N. Mutations in the gene encoding capillary morphogenesis protein 2 cause juvenile hyaline fibromatosis and infantile systemic hyalinosis. Am J Hum Genet. 2003 Oct;73(4):791-800. Epub 2003 Aug 21. PMID:14508707 doi:S0002-9297(07)63628-3
  10. Dowling O, Difeo A, Ramirez MC, Tukel T, Narla G, Bonafe L, Kayserili H, Yuksel-Apak M, Paller AS, Norton K, Teebi AS, Grum-Tokars V, Martin GS, Davis GE, Glucksman MJ, Martignetti JA. Mutations in capillary morphogenesis gene-2 result in the allelic disorders juvenile hyaline fibromatosis and infantile systemic hyalinosis. Am J Hum Genet. 2003 Oct;73(4):957-66. Epub 2003 Sep 12. PMID:12973667 doi:http://dx.doi.org/S0002-9297(07)63642-8
  11. Hanks S, Adams S, Douglas J, Arbour L, Atherton DJ, Balci S, Bode H, Campbell ME, Feingold M, Keser G, Kleijer W, Mancini G, McGrath JA, Muntoni F, Nanda A, Teare MD, Warman M, Pope FM, Superti-Furga A, Futreal PA, Rahman N. Mutations in the gene encoding capillary morphogenesis protein 2 cause juvenile hyaline fibromatosis and infantile systemic hyalinosis. Am J Hum Genet. 2003 Oct;73(4):791-800. Epub 2003 Aug 21. PMID:14508707 doi:S0002-9297(07)63628-3
  12. Bell SE, Mavila A, Salazar R, Bayless KJ, Kanagala S, Maxwell SA, Davis GE. Differential gene expression during capillary morphogenesis in 3D collagen matrices: regulated expression of genes involved in basement membrane matrix assembly, cell cycle progression, cellular differentiation and G-protein signaling. J Cell Sci. 2001 Aug;114(Pt 15):2755-73. PMID:11683410
  13. Dowling O, Difeo A, Ramirez MC, Tukel T, Narla G, Bonafe L, Kayserili H, Yuksel-Apak M, Paller AS, Norton K, Teebi AS, Grum-Tokars V, Martin GS, Davis GE, Glucksman MJ, Martignetti JA. Mutations in capillary morphogenesis gene-2 result in the allelic disorders juvenile hyaline fibromatosis and infantile systemic hyalinosis. Am J Hum Genet. 2003 Oct;73(4):957-66. Epub 2003 Sep 12. PMID:12973667 doi:http://dx.doi.org/S0002-9297(07)63642-8
  14. Gajjar PL, Romo MJP, Litchfield CM, Callahan M, Redd N, Nawarathnage S, Soleimani S, Averett J, Wilson E, Lewis A, Stewart C, Tseng YJ, Doukov T, Lebedev A, Moody JD. Decreasing the flexibility of the TELSAM-target protein linker and omitting the cleavable fusion tag improves crystal order and diffraction limits. bioRxiv. 2023 May 15:2023.05.12.540586. PMID:37293010 doi:10.1101/2023.05.12.540586

8fzu, resolution 1.90Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA