Structure of baseplate with receptor binding complex of Agrobacterium phage MilanoStructure of baseplate with receptor binding complex of Agrobacterium phage Milano

Structural highlights

8fqc is a 38 chain structure with sequence from Agrobacterium phage Milano. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Electron Microscopy, Resolution 3.2Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

A0A482MFS1_9CAUD

Publication Abstract from PubMed

A contractile sheath and rigid tube assembly is a widespread apparatus used by bacteriophages, tailocins, and the bacterial type VI secretion system to penetrate cell membranes. In this mechanism, contraction of an external sheath powers the motion of an inner tube through the membrane. The structure, energetics, and mechanism of the machinery imply rigidity and straightness. The contractile tail of Agrobacterium tumefaciens bacteriophage Milano is flexible and bent to varying degrees, which sets it apart from other contractile tail-like systems. Here, we report structures of the Milano tail including the sheath-tube complex, baseplate, and putative receptor-binding proteins. The flexible-to-rigid transformation of the Milano tail upon contraction can be explained by unique electrostatic properties of the tail tube and sheath. All components of the Milano tail, including sheath subunits, are crosslinked by disulfides, some of which must be reduced for contraction to occur. The putative receptor-binding complex of Milano contains a tailspike, a tail fiber, and at least two small proteins that form a garland around the distal ends of the tailspikes and tail fibers. Despite being flagellotropic, Milano lacks thread-like tail filaments that can wrap around the flagellum, and is thus likely to employ a different binding mechanism.

An extensive disulfide bond network prevents tail contraction in Agrobacterium tumefaciens phage Milano.,Sonani RR, Palmer LK, Esteves NC, Horton AA, Sebastian AL, Kelly RJ, Wang F, Kreutzberger MAB, Russell WK, Leiman PG, Scharf BE, Egelman EH Nat Commun. 2024 Jan 26;15(1):756. doi: 10.1038/s41467-024-44959-z. PMID:38272938[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Sonani RR, Palmer LK, Esteves NC, Horton AA, Sebastian AL, Kelly RJ, Wang F, Kreutzberger MAB, Russell WK, Leiman PG, Scharf BE, Egelman EH. An extensive disulfide bond network prevents tail contraction in Agrobacterium tumefaciens phage Milano. Nat Commun. 2024 Jan 26;15(1):756. PMID:38272938 doi:10.1038/s41467-024-44959-z

8fqc, resolution 3.20Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA