Human Carbonic Anhydrase II Heterobifunctional DegradersHuman Carbonic Anhydrase II Heterobifunctional Degraders

Structural highlights

8emu is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.13Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

CAH2_HUMAN Defects in CA2 are the cause of osteopetrosis autosomal recessive type 3 (OPTB3) [MIM:259730; also known as osteopetrosis with renal tubular acidosis, carbonic anhydrase II deficiency syndrome, Guibaud-Vainsel syndrome or marble brain disease. Osteopetrosis is a rare genetic disease characterized by abnormally dense bone, due to defective resorption of immature bone. The disorder occurs in two forms: a severe autosomal recessive form occurring in utero, infancy, or childhood, and a benign autosomal dominant form occurring in adolescence or adulthood. Autosomal recessive osteopetrosis is usually associated with normal or elevated amount of non-functional osteoclasts. OPTB3 is associated with renal tubular acidosis, cerebral calcification (marble brain disease) and in some cases with mental retardation.[1] [2] [3] [4] [5]

Function

CAH2_HUMAN Essential for bone resorption and osteoclast differentiation (By similarity). Reversible hydration of carbon dioxide. Can hydrate cyanamide to urea. Involved in the regulation of fluid secretion into the anterior chamber of the eye.[6] [7]

Publication Abstract from PubMed

Human carbonic anhydrase II (hCAII) is a metalloenzyme essential to critical physiological processes in the body. hCA inhibitors are used clinically for the treatment of indications ranging from glaucoma to epilepsy. Targeted protein degraders have emerged as a promising means of inducing the degradation of disease-implicated proteins by using the endogenous quality control mechanisms of a cell. Here, a series of heterobifunctional degrader candidates targeting hCAII were developed from a simple aryl sulfonamide fragment. Degrader candidates were functionalized to produce either cereblon E3 ubiquitin ligase (CRBN) recruiting proteolysis targeting chimeras (PROTACs) or adamantyl-based hydrophobic tags (HyTs). Screens in HEK293 cells identified two PROTAC small-molecule degraders of hCA. Optimization of linker length and composition yielded a degrader with sub-nanomolar potency and sustained depletion of hCAII over prolonged treatments. Mechanistic studies suggest that this optimized degrader depletes hCAII through the same mechanism as previously reported CRBN-recruiting heterobifunctional degraders.

Development of Human Carbonic Anhydrase II Heterobifunctional Degraders.,O'Herin CB, Moriuchi YW, Bemis TA, Kohlbrand AJ, Burkart MD, Cohen SM J Med Chem. 2023 Feb 3. doi: 10.1021/acs.jmedchem.2c01843. PMID:36735827[8]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Venta PJ, Welty RJ, Johnson TM, Sly WS, Tashian RE. Carbonic anhydrase II deficiency syndrome in a Belgian family is caused by a point mutation at an invariant histidine residue (107 His----Tyr): complete structure of the normal human CA II gene. Am J Hum Genet. 1991 Nov;49(5):1082-90. PMID:1928091
  2. Roth DE, Venta PJ, Tashian RE, Sly WS. Molecular basis of human carbonic anhydrase II deficiency. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1804-8. PMID:1542674
  3. Soda H, Yukizane S, Yoshida I, Koga Y, Aramaki S, Kato H. A point mutation in exon 3 (His 107-->Tyr) in two unrelated Japanese patients with carbonic anhydrase II deficiency with central nervous system involvement. Hum Genet. 1996 Apr;97(4):435-7. PMID:8834238
  4. Hu PY, Lim EJ, Ciccolella J, Strisciuglio P, Sly WS. Seven novel mutations in carbonic anhydrase II deficiency syndrome identified by SSCP and direct sequencing analysis. Hum Mutat. 1997;9(5):383-7. PMID:9143915 doi:<383::AID-HUMU1>3.0.CO;2-5 10.1002/(SICI)1098-1004(1997)9:5<383::AID-HUMU1>3.0.CO;2-5
  5. Shah GN, Bonapace G, Hu PY, Strisciuglio P, Sly WS. Carbonic anhydrase II deficiency syndrome (osteopetrosis with renal tubular acidosis and brain calcification): novel mutations in CA2 identified by direct sequencing expand the opportunity for genotype-phenotype correlation. Hum Mutat. 2004 Sep;24(3):272. PMID:15300855 doi:10.1002/humu.9266
  6. Briganti F, Mangani S, Scozzafava A, Vernaglione G, Supuran CT. Carbonic anhydrase catalyzes cyanamide hydration to urea: is it mimicking the physiological reaction? J Biol Inorg Chem. 1999 Oct;4(5):528-36. PMID:10550681
  7. Kim CY, Whittington DA, Chang JS, Liao J, May JA, Christianson DW. Structural aspects of isozyme selectivity in the binding of inhibitors to carbonic anhydrases II and IV. J Med Chem. 2002 Feb 14;45(4):888-93. PMID:11831900
  8. O'Herin CB, Moriuchi YW, Bemis TA, Kohlbrand AJ, Burkart MD, Cohen SM. Development of Human Carbonic Anhydrase II Heterobifunctional Degraders. J Med Chem. 2023 Feb 23;66(4):2789-2803. PMID:36735827 doi:10.1021/acs.jmedchem.2c01843

8emu, resolution 1.13Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA