Crystal structure of human KRAS G12C covalently bound with Taiho WO2020/085493A1 compound 6Crystal structure of human KRAS G12C covalently bound with Taiho WO2020/085493A1 compound 6

Structural highlights

8dnk is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.23Å
Ligands:, , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

RASK_HUMAN Defects in KRAS are a cause of acute myelogenous leukemia (AML) [MIM:601626. AML is a malignant disease in which hematopoietic precursors are arrested in an early stage of development.[1] Defects in KRAS are a cause of juvenile myelomonocytic leukemia (JMML) [MIM:607785. JMML is a pediatric myelodysplastic syndrome that constitutes approximately 30% of childhood cases of myelodysplastic syndrome (MDS) and 2% of leukemia. It is characterized by leukocytosis with tissue infiltration and in vitro hypersensitivity of myeloid progenitors to granulocyte-macrophage colony stimulating factor. Defects in KRAS are the cause of Noonan syndrome type 3 (NS3) [MIM:609942. Noonan syndrome (NS) [MIM:163950 is a disorder characterized by dysmorphic facial features, short stature, hypertelorism, cardiac anomalies, deafness, motor delay, and a bleeding diathesis. It is a genetically heterogeneous and relatively common syndrome, with an estimated incidence of 1 in 1000-2500 live births. Rarely, NS is associated with juvenile myelomonocytic leukemia (JMML). NS3 inheritance is autosomal dominant.[2] [3] [4] [5] [6] [7] Defects in KRAS are a cause of gastric cancer (GASC) [MIM:613659; also called gastric cancer intestinal or stomach cancer. Gastric cancer is a malignant disease which starts in the stomach, can spread to the esophagus or the small intestine, and can extend through the stomach wall to nearby lymph nodes and organs. It also can metastasize to other parts of the body. The term gastric cancer or gastric carcinoma refers to adenocarcinoma of the stomach that accounts for most of all gastric malignant tumors. Two main histologic types are recognized, diffuse type and intestinal type carcinomas. Diffuse tumors are poorly differentiated infiltrating lesions, resulting in thickening of the stomach. In contrast, intestinal tumors are usually exophytic, often ulcerating, and associated with intestinal metaplasia of the stomach, most often observed in sporadic disease.[8] [9] [10] Note=Defects in KRAS are a cause of pylocytic astrocytoma (PA). Pylocytic astrocytomas are neoplasms of the brain and spinal cord derived from glial cells which vary from histologically benign forms to highly anaplastic and malignant tumors.[11] Defects in KRAS are a cause of cardiofaciocutaneous syndrome (CFC syndrome) [MIM:115150; also known as cardio-facio-cutaneous syndrome. CFC syndrome is characterized by a distinctive facial appearance, heart defects and mental retardation. Heart defects include pulmonic stenosis, atrial septal defects and hypertrophic cardiomyopathy. Some affected individuals present with ectodermal abnormalities such as sparse, friable hair, hyperkeratotic skin lesions and a generalized ichthyosis-like condition. Typical facial features are similar to Noonan syndrome. They include high forehead with bitemporal constriction, hypoplastic supraorbital ridges, downslanting palpebral fissures, a depressed nasal bridge, and posteriorly angulated ears with prominent helices. The inheritance of CFC syndrome is autosomal dominant. Note=KRAS mutations are involved in cancer development.

Function

RASK_HUMAN Ras proteins bind GDP/GTP and possess intrinsic GTPase activity.

Publication Abstract from PubMed

KRAS has long been referred to as an 'undruggable' target due to its high affinity for its cognate ligands (GDP and GTP) and its lack of readily exploited allosteric binding pockets. Recent progress in the development of covalent inhibitors of KRAS(G12C) has revealed that occupancy of an allosteric binding site located between the alpha3-helix and switch-II loop of KRAS(G12C)-sometimes referred to as the 'switch-II pocket'-holds great potential in the design of direct inhibitors of KRAS(G12C). In studying diverse switch-II pocket binders during the development of sotorasib (AMG 510), the first FDA-approved inhibitor of KRAS(G12C), we found the dramatic conformational flexibility of the switch-II pocket posing significant challenges toward the structure-based design of inhibitors. Here, we present our computational approaches for dealing with receptor flexibility in the prediction of ligand binding pose and binding affinity. For binding pose prediction, we modified the covalent docking program CovDock to allow for protein conformational mobility. This new docking approach, termed as FlexCovDock, improves success rates from 55 to 89% for binding pose prediction on a dataset of 10 cross-docking cases and has been prospectively validated across diverse ligand chemotypes. For binding affinity prediction, we found standard free energy perturbation (FEP) methods could not adequately handle the significant conformational change of the switch-II loop. We developed a new computational strategy to accelerate conformational transitions through the use of targeted protein mutations. Using this methodology, the mean unsigned error (MUE) of binding affinity prediction were reduced from 1.44 to 0.89 kcal/mol on a set of 14 compounds. These approaches were of significant use in facilitating the structure-based design of KRAS(G12C) inhibitors and are anticipated to be of further use in the design of covalent (and noncovalent) inhibitors of other conformationally labile protein targets.

Modeling receptor flexibility in the structure-based design of KRAS(G12C) inhibitors.,Zhu K, Li C, Wu KY, Mohr C, Li X, Lanman B J Comput Aided Mol Des. 2022 Aug 5. pii: 10.1007/s10822-022-00467-0. doi:, 10.1007/s10822-022-00467-0. PMID:35930206[12]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Bollag G, Adler F, elMasry N, McCabe PC, Conner E Jr, Thompson P, McCormick F, Shannon K. Biochemical characterization of a novel KRAS insertion mutation from a human leukemia. J Biol Chem. 1996 Dec 20;271(51):32491-4. PMID:8955068
  2. Carta C, Pantaleoni F, Bocchinfuso G, Stella L, Vasta I, Sarkozy A, Digilio C, Palleschi A, Pizzuti A, Grammatico P, Zampino G, Dallapiccola B, Gelb BD, Tartaglia M. Germline missense mutations affecting KRAS Isoform B are associated with a severe Noonan syndrome phenotype. Am J Hum Genet. 2006 Jul;79(1):129-35. Epub 2006 May 1. PMID:16773572 doi:10.1086/504394
  3. Schubbert S, Zenker M, Rowe SL, Boll S, Klein C, Bollag G, van der Burgt I, Musante L, Kalscheuer V, Wehner LE, Nguyen H, West B, Zhang KY, Sistermans E, Rauch A, Niemeyer CM, Shannon K, Kratz CP. Germline KRAS mutations cause Noonan syndrome. Nat Genet. 2006 Mar;38(3):331-6. Epub 2006 Feb 12. PMID:16474405 doi:ng1748
  4. Bertola DR, Pereira AC, Brasil AS, Albano LM, Kim CA, Krieger JE. Further evidence of genetic heterogeneity in Costello syndrome: involvement of the KRAS gene. J Hum Genet. 2007;52(6):521-6. Epub 2007 Apr 28. PMID:17468812 doi:10.1007/s10038-007-0146-1
  5. Zenker M, Lehmann K, Schulz AL, Barth H, Hansmann D, Koenig R, Korinthenberg R, Kreiss-Nachtsheim M, Meinecke P, Morlot S, Mundlos S, Quante AS, Raskin S, Schnabel D, Wehner LE, Kratz CP, Horn D, Kutsche K. Expansion of the genotypic and phenotypic spectrum in patients with KRAS germline mutations. J Med Genet. 2007 Feb;44(2):131-5. Epub 2006 Oct 20. PMID:17056636 doi:10.1136/jmg.2006.046300
  6. Kratz CP, Zampino G, Kriek M, Kant SG, Leoni C, Pantaleoni F, Oudesluys-Murphy AM, Di Rocco C, Kloska SP, Tartaglia M, Zenker M. Craniosynostosis in patients with Noonan syndrome caused by germline KRAS mutations. Am J Med Genet A. 2009 May;149A(5):1036-40. doi: 10.1002/ajmg.a.32786. PMID:19396835 doi:10.1002/ajmg.a.32786
  7. Gremer L, Merbitz-Zahradnik T, Dvorsky R, Cirstea IC, Kratz CP, Zenker M, Wittinghofer A, Ahmadian MR. Germline KRAS mutations cause aberrant biochemical and physical properties leading to developmental disorders. Hum Mutat. 2011 Jan;32(1):33-43. doi: 10.1002/humu.21377. Epub 2010 Dec 9. PMID:20949621 doi:10.1002/humu.21377
  8. Deng GR, Lu YY, Chen SM, Miao J, Lu GR, Li H, Cai H, Xu XL, E Z, Liu PN. Activated c-Ha-ras oncogene with a guanine to thymine transversion at the twelfth codon in a human stomach cancer cell line. Cancer Res. 1987 Jun 15;47(12):3195-8. PMID:3034404
  9. Lee KH, Lee JS, Suh C, Kim SW, Kim SB, Lee JH, Lee MS, Park MY, Sun HS, Kim SH. Clinicopathologic significance of the K-ras gene codon 12 point mutation in stomach cancer. An analysis of 140 cases. Cancer. 1995 Jun 15;75(12):2794-801. PMID:7773929
  10. Lee SH, Lee JW, Soung YH, Kim HS, Park WS, Kim SY, Lee JH, Park JY, Cho YG, Kim CJ, Nam SW, Kim SH, Lee JY, Yoo NJ. BRAF and KRAS mutations in stomach cancer. Oncogene. 2003 Oct 9;22(44):6942-5. PMID:14534542 doi:10.1038/sj.onc.1206749
  11. Motojima K, Urano T, Nagata Y, Shiku H, Tsurifune T, Kanematsu T. Detection of point mutations in the Kirsten-ras oncogene provides evidence for the multicentricity of pancreatic carcinoma. Ann Surg. 1993 Feb;217(2):138-43. PMID:8439212
  12. Zhu K, Li C, Wu KY, Mohr C, Li X, Lanman B. Modeling receptor flexibility in the structure-based design of KRAS(G12C) inhibitors. J Comput Aided Mol Des. 2022 Aug 5. pii: 10.1007/s10822-022-00467-0. doi:, 10.1007/s10822-022-00467-0. PMID:35930206 doi:http://dx.doi.org/10.1007/s10822-022-00467-0

8dnk, resolution 2.23Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA