8c9a
Cryo-EM captures early ribosome assembly in actionCryo-EM captures early ribosome assembly in action
Structural highlights
FunctionRL22_ECOLI This protein binds specifically to 23S rRNA; its binding is stimulated by other ribosomal proteins, e.g. L4, L17, and L20. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome.[HAMAP-Rule:MF_01331_B] The globular domain of the protein is one of the proteins that surrounds the polypeptide exit tunnel on the outside of the subunit, while an extended beta-hairpin is found that penetrates into the center of the 70S ribosome where it lines the wall of the exit tunnel. Removal of most of this hairpin (residues 85-95) does not prevent its incorporation into 70S ribosomes. Two of the hairpin residues (91 and 93) seem to be involved in translation elongation arrest of the SecM protein, as their replacement by larger amino acids alleviates the arrest.[HAMAP-Rule:MF_01331_B] Publication Abstract from PubMedRibosome biogenesis is a fundamental multi-step cellular process in all domains of life that involves the production, processing, folding, and modification of ribosomal RNAs (rRNAs) and ribosomal proteins. To obtain insights into the still unexplored early assembly phase of the bacterial 50S subunit, we exploited a minimal in vitro reconstitution system using purified ribosomal components and scalable reaction conditions. Time-limited assembly assays combined with cryo-EM analysis visualizes the structurally complex assembly pathway starting with a particle consisting of ordered density for only ~500 nucleotides of 23S rRNA domain I and three ribosomal proteins. In addition, our structural analysis reveals that early 50S assembly occurs in a domain-wise fashion, while late 50S assembly proceeds incrementally. Furthermore, we find that both ribosomal proteins and folded rRNA helices, occupying surface exposed regions on pre-50S particles, induce, or stabilize rRNA folds within adjacent regions, thereby creating cooperativity. Cryo-EM captures early ribosome assembly in action.,Qin B, Lauer SM, Balke A, Vieira-Vieira CH, Burger J, Mielke T, Selbach M, Scheerer P, Spahn CMT, Nikolay R Nat Commun. 2023 Feb 17;14(1):898. doi: 10.1038/s41467-023-36607-9. PMID:36797249[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|