Room-temperature structure of the stabilised A2A-LUAA47070 complex determined by synchrotron serial crystallographyRoom-temperature structure of the stabilised A2A-LUAA47070 complex determined by synchrotron serial crystallography

Structural highlights

8a2p is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3.5Å
Ligands:, , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

AA2AR_HUMAN Receptor for adenosine. The activity of this receptor is mediated by G proteins which activate adenylyl cyclase.C562_ECOLX Electron-transport protein of unknown function.

Publication Abstract from PubMed

Serial crystallography has emerged as an important tool for structural studies of integral membrane proteins. The ability to collect data from micrometre-sized weakly diffracting crystals at room temperature with minimal radiation damage has opened many new opportunities in time-resolved studies and drug discovery. However, the production of integral membrane protein microcrystals in lipidic cubic phase at the desired crystal density and quantity is challenging. This paper introduces VIALS (versatile approach to high-density microcrystals in lipidic cubic phase for serial crystallography), a simple, fast and efficient method for preparing hundreds of microlitres of high-density microcrystals suitable for serial X-ray diffraction experiments at both synchrotron and free-electron laser sources. The method is also of great benefit for rational structure-based drug design as it facilitates in situ crystal soaking and rapid determination of many co-crystal structures. Using the VIALS approach, room-temperature structures are reported of (i) the archaerhodopsin-3 protein in its dark-adapted state and 110 ns photocycle intermediate, determined to 2.2 and 1.7 A, respectively, and (ii) the human A(2A) adenosine receptor in complex with two different ligands determined to a resolution of 3.5 A.

A versatile approach to high-density microcrystals in lipidic cubic phase for room-temperature serial crystallography.,Birch J, Kwan TOC, Judge PJ, Axford D, Aller P, Butryn A, Reis RI, Bada Juarez JF, Vinals J, Owen RL, Nango E, Tanaka R, Tono K, Joti Y, Tanaka T, Owada S, Sugahara M, Iwata S, Orville AM, Watts A, Moraes I J Appl Crystallogr. 2023 Aug 18;56(Pt 5):1361-1370. doi: , 10.1107/S1600576723006428. eCollection 2023 Oct 1. PMID:37791355[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Birch J, Kwan TOC, Judge PJ, Axford D, Aller P, Butryn A, Reis RI, Bada Juarez JF, Vinals J, Owen RL, Nango E, Tanaka R, Tono K, Joti Y, Tanaka T, Owada S, Sugahara M, Iwata S, Orville AM, Watts A, Moraes I. A versatile approach to high-density microcrystals in lipidic cubic phase for room-temperature serial crystallography. J Appl Crystallogr. 2023 Aug 18;56(Pt 5):1361-1370. PMID:37791355 doi:10.1107/S1600576723006428

8a2p, resolution 3.50Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA