7ysx
Crystal structure of PDE4D complexed with licoisoflavone ACrystal structure of PDE4D complexed with licoisoflavone A
Structural highlights
DiseasePDE4D_HUMAN Note=Genetic variations in PDE4D might be associated with susceptibility to stroke. PubMed:17006457 states that association with stroke has to be considered with caution. Defects in PDE4D are the cause of acrodysostosis type 2, with or without hormone resistance (ACRDYS2) [MIM:614613. ACRDYS2 is a pleiotropic disorder characterized by skeletal, endocrine, and neurological abnormalities. Skeletal features include brachycephaly, midface hypoplasia with a small upturned nose, brachydactyly, and lumbar spinal stenosis. Endocrine abnormalities include hypothyroidism and hypogonadism in males and irregular menses in females. Developmental disability is a common finding but is variable in severity and can be associated with significant behavioral problems.[1] FunctionPDE4D_HUMAN Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes.[2] [3] Publication Abstract from PubMedThe coronavirus disease 2019 (COVID-19) pandemic is an ongoing global health concern, and effective antiviral reagents are urgently needed. Traditional Chinese medicine theory-driven natural drug research and development (TCMT-NDRD) is a feasible method to address this issue as the traditional Chinese medicine formulae have been shown effective in the treatment of COVID-19. Huashi Baidu decoction (Q-14) is a clinically approved formula for COVID-19 therapy with antiviral and anti-inflammatory effects. Here, an integrative pharmacological strategy was applied to identify the antiviral and anti-inflammatory bioactive compounds from Q-14. Overall, a total of 343 chemical compounds were initially characterized, and 60 prototype compounds in Q-14 were subsequently traced in plasma using ultrahigh-performance liquid chromatography with quadrupole time-of-flight mass spectrometry. Among the 60 compounds, six compounds (magnolol, glycyrrhisoflavone, licoisoflavone A, emodin, echinatin, and quercetin) were identified showing a dose-dependent inhibition effect on the SARS-CoV-2 infection, including two inhibitors (echinatin and quercetin) of the main protease (M(pro)), as well as two inhibitors (glycyrrhisoflavone and licoisoflavone A) of the RNA-dependent RNA polymerase (RdRp). Meanwhile, three anti-inflammatory components, including licochalcone B, echinatin, and glycyrrhisoflavone, were identified in a SARS-CoV-2-infected inflammatory cell model. In addition, glycyrrhisoflavone and licoisoflavone A also displayed strong inhibitory activities against cAMP-specific 3',5'-cyclic phosphodiesterase 4 (PDE4). Crystal structures of PDE4 in complex with glycyrrhisoflavone or licoisoflavone A were determined at resolutions of 1.54 A and 1.65 A, respectively, and both compounds bind in the active site of PDE4 with similar interactions. These findings will greatly stimulate the study of TCMT-NDRD against COVID-19. Bioactive compounds from Huashi Baidu decoction possess both antiviral and anti-inflammatory effects against COVID-19.,Xu H, Li S, Liu J, Cheng J, Kang L, Li W, Zhong Y, Wei C, Fu L, Qi J, Zhang Y, You M, Zhou Z, Zhang C, Su H, Yao S, Zhou Z, Shi Y, Deng R, Lv Q, Li F, Qi F, Chen J, Zhang S, Ma X, Xu Z, Li S, Xu Y, Peng K, Shi Y, Jiang H, Gao GF, Huang L Proc Natl Acad Sci U S A. 2023 May 2;120(18):e2301775120. doi: , 10.1073/pnas.2301775120. Epub 2023 Apr 24. PMID:37094153[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|