Crystal structure of AflSQS from Aspergillus flavusCrystal structure of AflSQS from Aspergillus flavus

Structural highlights

7wgi is a 1 chain structure with sequence from Aspergillus flavus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.5Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

A0A364LX79_ASPFL Catalyzes the condensation of 2 farnesyl pyrophosphate (FPP) moieties to form squalene.[RuleBase:RU368088]

Publication Abstract from PubMed

There is interest in the development of drugs to treat fungal infections due to the increasing threat of drug resistance, and here, we report the first crystallographic structure of the catalytic domain of a fungal squalene synthase (SQS), Aspergillus flavus SQS (AfSQS), a potential drug target, together with a bioinformatics study of fungal, human, and protozoal SQSs. Our X-ray results show strong structural similarities between the catalytic domains in these proteins, but, remarkably, using bioinformatics, we find that there is also a large, highly polar helix in the fungal proteins that connects the catalytic and membrane-anchoring transmembrane domains. This polar helix is absent in squalene synthases from all other lifeforms. We show that the transmembrane domain in AfSQS and in other SQSs, stannin, and steryl sulfatase, have very similar properties (% polar residues, hydrophobicity, and hydrophobic moment) to those found in the "penultimate" C-terminal helical domain in squalene epoxidase, while the final C-terminal domain in squalene epoxidase is more polar and may be monotopic. We also propose structural models for full-length AfSQS based on the bioinformatics results as well as a deep learning program that indicate that the C-terminus region may also be membrane surface-associated. Taken together, our results are of general interest given the unique nature of the polar helical domain in fungi that may be involved in protein-protein interactions as well as being a future target for antifungals.

A Structural and Bioinformatics Investigation of a Fungal Squalene Synthase and Comparisons with Other Membrane Proteins.,Malwal SR, Shang N, Liu W, Li X, Zhang L, Chen CC, Guo RT, Oldfield E ACS Omega. 2022 Jun 17;7(26):22601-22612. doi: 10.1021/acsomega.2c01924., eCollection 2022 Jul 5. PMID:35811857[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Malwal SR, Shang N, Liu W, Li X, Zhang L, Chen CC, Guo RT, Oldfield E. A Structural and Bioinformatics Investigation of a Fungal Squalene Synthase and Comparisons with Other Membrane Proteins. ACS Omega. 2022 Jun 17;7(26):22601-22612. doi: 10.1021/acsomega.2c01924., eCollection 2022 Jul 5. PMID:35811857 doi:http://dx.doi.org/10.1021/acsomega.2c01924

7wgi, resolution 2.50Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA