7wcv
Co-crystal structure of FTO bound to 6eCo-crystal structure of FTO bound to 6e
Structural highlights
DiseaseFTO_HUMAN Defects in FTO are the cause of growth retardation developmental delay coarse facies and early death (GDFD) [MIM:612938. A severe polymalformation syndrome characterized by postnatal growth retardation, microcephaly, severe psychomotor delay, functional brain deficits and characteristic facial dysmorphism. In some patients, structural brain malformations, cardiac defects, genital anomalies, and cleft palate are observed. Early death occurs by the age of 3 years.[1] FunctionFTO_HUMAN Dioxygenase that repairs alkylated DNA and RNA by oxidative demethylation. Has highest activity towards single-stranded RNA containing 3-methyluracil, followed by single-stranded DNA containing 3-methylthymine. Has low demethylase activity towards single-stranded DNA containing 1-methyladenine or 3-methylcytosine. Has no activity towards 1-methylguanine. Has no detectable activity towards double-stranded DNA. Requires molecular oxygen, alpha-ketoglutarate and iron. Contributes to the regulation of the global metabolic rate, energy expenditure and energy homeostasis. Contributes to the regulation of body size and body fat accumulation.[2] [3] Publication Abstract from PubMedThe N(6)-methyladenosine (m(6)A) demethylase FTO is overexpressed in acute myeloid leukemia (AML) cells and promotes leukemogenesis. We previously developed tricyclic benzoic acid FB23 as a highly potent FTO inhibitor in vitro. However, it showed a moderate antiproliferative effect on AML cells. In this work, we performed a structure-activity relationship study of tricyclic benzoic acids as FTO inhibitors. The analog 13a exhibited excellent inhibitory effects on FTO similar to that of FB23 in vitro. In contrast to FB23, 13a exerted a strong antiproliferative effect on AML cells. Like FTO knock down, 13a upregulated ASB2 and RARA expression and increased the protein abundance while it downregulated MYC expression and decreased MYC protein abundance. These genes are key FTO targets in AML cells. Finally, 13a treatment improved the survival rate of MONOMAC6-transplanted NSG mice. Collectively, our data suggest that targeting FTO with tricyclic benzoic acid inhibitors may be a potential strategy for treating AML. Structure-Activity Relationships and Antileukemia Effects of the Tricyclic Benzoic Acid FTO Inhibitors.,Liu Z, Duan Z, Zhang D, Xiao P, Zhang T, Xu H, Wang CH, Rao GW, Gan J, Huang Y, Yang CG, Dong Z J Med Chem. 2022 Jul 6. doi: 10.1021/acs.jmedchem.2c00848. PMID:35793358[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|